苏志勋

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:创新园大厦(海山楼)B1313

联系方式:84708351-8093

电子邮箱:zxsu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Learning an Alternating Bergman Network for Non-convex and Non-smooth Optimization Problems

点击次数:

论文类型:会议论文

发表时间:2017-01-01

收录刊物:EI、CPCI-S

卷号:10559

页面范围:11-27

关键字:Non-convex optimization; Alternating direction method; Sparse approximation; Learning-based algorithm; Optimization network

摘要:Recently, non-convex and non-smooth problems have received considerable interests in the fields of image processing and machine learning. The proposed conventional algorithms rely on carefully designed initializations, and the parameters can not be tuned adaptively during iterations with corresponding to various real-world data. To settle these problems, we propose an alternating Bregman network (ABN), which discriminatively learns all the parameters from training pairs and then is directly applied to test data without additional operations. Specifically, parameters of ABN are adaptively learnt from training data to force the objective value drop rapidly toward the optimal and then obtain a desired solution in practice. Furthermore, the basis algorithm of ABN is an alternating method with Bregman modification (AMBM), which solves each subproblem with a designated Bregman distance. This AMBM is more general and flexible than previous approaches; at the same time it is proved to receive the best convergence result for general non-convex and non-smooth optimization problems. Thus, our proposed ABN is an efficient and converged algorithm which rapidly converges to desired solutions in practice. We applied ABN to sparse coding problem with l(0) penalty and the experimental results verify the efficiency of our proposed algorithm.