个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
办公地点:创新园大厦(海山楼)B1313
联系方式:84708351-8093
电子邮箱:zxsu@dlut.edu.cn
Linearized alternating direction method with adaptive penalty for low-rank representation
点击次数:
论文类型:会议论文
发表时间:2011-12-12
收录刊物:EI、Scopus
摘要:Many machine learning and signal processing problems can be formulated as lin-early constrained convex programs, which could be efficiently solved by the alternating direction method (ADM). However, usually the subproblems in ADM are easily solvable only when the linear mappings in the constraints are identities. To address this issue, we propose a linearized ADM (LADM) method by linearizing the quadratic penalty term and adding a proximal term when solving the sub-problems. For fast convergence, we also allow the penalty to change adaptively according a novel update rule. We prove the global convergence of LADM with adaptive penalty (LADMAP). As an example, we apply LADMAP to solve low-rank representation (LRR), which is an important subspace clustering technique yet suffers from high computation cost. By combining LADMAP with a skinny SVD representation technique, we are able to reduce the complexity O(n 3) of the original ADM based method to O(rn 2), where r and n are the rank and size of the representation matrix, respectively, hence making LRR possible for large scale applications. Numerical experiments verify that for LRR our LADMAP based methods are much faster than state-of-the-art algorithms.