苏志勋

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:创新园大厦(海山楼)B1313

联系方式:84708351-8093

电子邮箱:zxsu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A semi-supervised dimensionality reduction framework for face recognition based on sparse Lorentzian metric tensors

点击次数:

论文类型:期刊论文

发表时间:2011-04-01

发表刊物:Journal of Information and Computational Science

收录刊物:EI、Scopus

卷号:8

期号:4

页面范围:601-608

ISSN号:15487741

摘要:There has been significant recent interest in extending supervised algorithms to semi-supervised form which preserve local structures of the unlabeled samples. However, how to choose the homogeneous points is still an open-problem. In this paper, by introducing the sparse Lorentzian metric, we propose a general framework to extend supervised algorithms to semi-supervised case. Our proposed techniques can find the homogeneous points of the unlabeled samples in a more natural way. The learnt sparse Lorentzian metric tensors can also keep both the local structure of the unlabeled samples and their global geometrical structure. The experimental results on face recognition show that our algorithm achieves better recognition accuracy. Copyright ? 2011 Binary Information Press.