苏志勋

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:创新园大厦(海山楼)B1313

联系方式:84708351-8093

电子邮箱:zxsu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A generalized nonlocal mean framework with object-level cues for saliency detection

点击次数:

论文类型:期刊论文

发表时间:2016-05-01

发表刊物:VISUAL COMPUTER

收录刊物:SCIE、EI、Scopus

卷号:32

期号:5

页面范围:611-623

ISSN号:0178-2789

关键字:Generalized nonlocal mean; Saliency detection; Objectness cue

摘要:Nonlocal mean (NM) is an efficient method for many low-level image processing tasks. However, it is challenging to directly utilize NM for saliency detection. This is because that conventional NM method can only extract the structure of the image itself and is based on regular pixel-level graph. However, saliency detection usually requires human perceptions and more complex connectivity of image elements. In this paper, we propose a novel generalized nonlocal mean (GNM) framework with the object-level cue which fuses the low-level and high-level cues to generate saliency maps. For a given image, we first use uniqueness to describe the low-level cue. Second, we adopt the objectness algorithm to find potential object candidates, then we pool the object measures onto patches to generate two high-level cues. Finally, by fusing these three cues as an object-level cue for GNM, we obtain the saliency map of the image. Extensive experiments show that our GNM saliency detector produces more precise and reliable results compared to state-of-the-art algorithms.