个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
办公地点:创新园大厦(海山楼)B1313
联系方式:84708351-8093
电子邮箱:zxsu@dlut.edu.cn
Subspace segmentation with a large number of subspaces using infinity norm minimization
点击次数:
论文类型:期刊论文
发表时间:2019-05-01
发表刊物:PATTERN RECOGNITION
收录刊物:EI、SCIE
卷号:89
页面范围:45-54
ISSN号:0031-3203
关键字:Subspace segmentation; Large subspace number; Infinity norm; Spectral-clustering based methods
摘要:Spectral-clustering based methods have recently attracted considerable attention in the field of subspace segmentation. The approximately block-diagonal graphs achieved by this kind of methods usually contain some noise, i.e., nonzero elements in the off-diagonal region, due to outlier contamination or complex intrinsic structure of the dataset. In the experiment of most previous work, the number of the subspaces is often no more than 10. In this situation, this kind of noise almost has no influence on the segmentation results. However, the segmentation performance could be negatively affected by the noise when the number of subspaces is large, which is quite common in the real-world applications. In this paper, we address the problem of LSN subspace segmentation, i.e., large subspace number subspace segmentation. We first show that the approximately block-diagonal graph with the smaller difference in its diagonal blocks will be more robust to the off-diagonal noise mentioned above. Then, by using the infinity norm to control the bound of the difference in the diagonal blocks, we propose infinity norm minimization for LSN subspace segmentation. Experimental results demonstrate the effectiveness of our method. (C) 2018 Elsevier Ltd. All rights reserved.