个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
办公地点:创新园大厦(海山楼)B1313
联系方式:84708351-8093
电子邮箱:zxsu@dlut.edu.cn
Robust dense correspondence using deep convolutional features
点击次数:
论文类型:期刊论文
发表时间:2020-04-01
发表刊物:VISUAL COMPUTER
收录刊物:SCIE
卷号:36
期号:4
页面范围:827-841
ISSN号:0178-2789
关键字:Deep convolutional neural network; Dense correspondence; Image matching; Optical flow; Handcrafted feature
摘要:Image matching is a challenging problem as different views often undergo significant appearance changes caused by illumination changes, scale variations, large displacement, and deformation. Most state-of-the-art algorithms, however, still cannot perform well enough in handling challenging real-world cases, especially in different objects and scenes. In this paper, we explore deep features extracted from pretrained convolutional neural networks to help the estimation of image matching so that dense pixel correspondence can be built. As the deep features are able to describe the image structures and details hierarchically, the matching method based on these features is able to match different scenes and object appearances effectively. We analyze the deep features and compare them with other robust features, e.g., SIFT. Extensive experiments on benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of visually matching quality and accuracy.