苏志勋

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:创新园大厦(海山楼)B1313

联系方式:84708351-8093

电子邮箱:zxsu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Weakly supervised single image dehazing

点击次数:

论文类型:期刊论文

发表时间:2021-01-10

发表刊物:JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION

卷号:72

ISSN号:1047-3203

关键字:Image dehazing; Weakly supervised; Convolutional neural network (CNN); Multi-level multi-scale block

摘要:Single image dehazing is a critical image pre-processing step for many practical vision systems. Most existing dehazing methods solve this problem utilizing various of hand-crafted priors or by supervised training on the synthetic hazy image information (such as haze-free image, transmission map and atmospheric light). However, the assumptions on the hand-crafted priors are easily violated and collecting realistic transmission map and atmospheric light are unpractical. In this paper, we propose a novel weakly supervised network based on the multi-level multi-scale block. The proposed network reduces the constraint on the training data and automatically estimates the transmission map and the atmospheric light as well as the intermediate haze-free image without using any realistic transmission map and atmospheric light as supervision. Moreover, the estimated intermediate haze-free image helps to generate accurate transmission map and atmospheric light by embedding the physical-model, which presents reliable restoration of the final haze-free image. In particular, our network also can be trained on the real-world dataset to fine-tune the model and the fine-tuning operation improves the dehazing performance on the real-world dataset. Quantitative and qualitative experimental results demonstrate the proposed method performs on par with the supervised methods.