苏志勋

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:创新园大厦(海山楼)B1313

联系方式:84708351-8093

电子邮箱:zxsu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Structure-Constrained Low-Rank Representation

点击次数:

论文类型:期刊论文

发表时间:2014-12-01

发表刊物:IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

收录刊物:SCIE、Scopus

卷号:25

期号:12

页面范围:2167-2179

ISSN号:2162-237X

关键字:Disjoint subspaces; low-rank representation (LRR); semisupervised learning; subspace segmentation

摘要:Benefiting from its effectiveness in subspace segmentation, low-rank representation (LRR) and its variations have many applications in computer vision and pattern recognition, such as motion segmentation, image segmentation, saliency detection, and semisupervised learning. It is known that the standard LRR can only work well under the assumption that all the subspaces are independent. However, this assumption cannot be guaranteed in real-world problems. This paper addresses this problem and provides an extension of LRR, named structure-constrained LRR (SC-LRR), to analyze the structure of multiple disjoint subspaces, which is more general for real vision data. We prove that the relationship of multiple linear disjoint subspaces can be exactly revealed by SC-LRR, with a predefined weight matrix. As a nontrivial byproduct, we also illustrate that SC-LRR can be applied for semisupervised learning. The experimental results on different types of vision problems demonstrate the effectiveness of our proposed method.