

pubs.acs.org/OrgLett Letter

Dual Photoredox- and Titanium Catalysis-Enabled Three-Component Radical Propargylation of Aldehydes with 1,3-Enynes

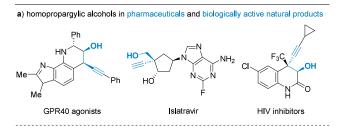
Xuehan Qi, Renxu Cao, Zhixian Wu, Jing-ran Shan, Fusheng Li, Er-jun Hao, Xiao Feng,* and Lei Shi*

ABSTRACT: Herein, a straightforward and practical strategy involving radicals for the three-component carbonyl propargylation via dual photoredox and titanium catalysis is presented. This strategy delivers homopropargyl alcohols and includes readily available starting materials, a broad substrate scope, high functional group tolerance, and mild reaction conditions. Catalytic Cp₂TiCl₂, recognized as an inexpensive, nontoxic, and bench-stable titanium source, is employed.

Peveloping eco-friendly and efficient synthetic strategies has been always a fundamental pursuit in organic chemistry. Propargylic compounds, such as homopropargylic alcohols/amines and their derivatives, serve as crucial building blocks for the synthesis of numerous pharmaceuticals and biologically active natural products (Figure 1a). The addition of π -propargylic or allenylic metal reagents to carbonyls is recognized as an essential and straightforward approach to construct versatile homopropargylic compounds. Propargyl halides and alcohol derivatives proved to be preeminent precursors when Pd, No. 8 Zn, In, Cr, 11 and Cu were employed as catalysts.

As the second most abundant transition metal in the Earth's crust, titanium stands out as an appealing option for catalytic applications due to its versatility, affordability, low toxicity, and well-established biocompatibility. Although titanium chemistry has been recognized primarily for its significant role in polyethylene production over the past two decades, its contributions to fine chemical synthesis have garnered increasing attention. Titanium catalysis has facilitated the development of a variety of catalytically active systems, allowing for substrate transformations across nearly all oxidation states of titanium and promoting the synthesis of numerous novel compounds. Titanium reagents, such as $\text{Ti}(\text{O}^{\text{i}}\text{Pr})_4$ and $\text{Cp}_2\text{Ti}\text{Cl}_2$, have been widely recognized as green and abundant catalysts and applied to various practical methodologies in modern synthetic chemistry. $^{13-32}$

Addition of an allenyl—titanium complex to carbonyl was used to synthesize homopropargylic alcohol derivatives (Figure 1b). Usually, the propargyl—titanium or allenyl—titanium complexes were prepared by treating the substituted propyne derivatives with *tert*-butyllithium, forming lithio propargylic intermediates, which subsequently underwent a transmetalliza-


tion of the lithium ion with ${\rm Ti}({\rm O^i Pr})_4$. Additionally, titanium species can be also generated through ligand exchange and subsequent elimination between divalent titanium reagent ${\rm Ti}({\rm O^i Pr})_4/{}^i{\rm Pr}{\rm MgBr}$ and propargyl halides or alcohol derivatives. These mechanisms essentially involve a two-electron transfer process. Given that ${\rm Cp_2Ti^{III}Cl}$ has been identified as a powerful one-electron reductant, we wondered whether propargyl—titanium complexes can be generated via single-electron transfer (SET) between ${\rm Cp_2Ti^{III}Cl}$ and propargylic radicals from 1,3-enynes. 35,36

1,3-Enynes and derivatives have attracted significant interest for their possibilities of preparing multifunctional substituted homopropargylic and allenylic products.^{37–42} Recently, transition metals, such as Cr, Ni, and Cu, were used as highefficiency catalysts to capture propargylic radicals by the SET process, forming propargyl— or allenyl—metal species (Figure 1c). For example, dual Cr/photoredox catalytic systems were developed by the Glorius and Wang groups via a radical-polar crossover mechanism, involving propargyl— and allenyl—Cr species and giving carbonyl propargylation and allenylation products, respectively.^{43,44} The Bao and Liu groups independently reported the fascinating Cu-catalyzed enantioselective synthesis of chiral allenes via the radical 1,4-dicarbonization of 1,3-enynes.^{45,46} Lu and co-workers reported a strategy for 1,4-alkylcyanation of 1,3-enynes with redox-active esters by merged photoredox and copper catalysis.⁴⁷ Besides, nickel

Received: February 19, 2025 Revised: March 13, 2025 Accepted: March 18, 2025 Published: March 20, 2025

b) Ionic pathway (2e*) for 1,3-enynes functionalization by various TM, well-developed

R1

R2

R1

R2

Oxidative | TTiIV |/PrMgBr

c) Radical pathway (1e) for 1,3-enynes functionalization by TM

d) This work, unexplored radical generation of allenyl-Ti species

- selective trap of propargylic radicals and allenyl radicals by Till
- radical propargylation of aldehydes via dual Ti and photoredox catalysis
- exceptional regio- and diastereoselectivity provide by Ti catalysis

Figure 1. (a) Homopropargylic alcohols in pharmaceuticals and biologically active natural products. (b) Previously reported methods for the synthesis of propargyl-titanium or allenyl-titanium complexes. (c) Radical functionalization of 1,3-enyne and carbonyl. (d) Radical carbonyl propargylation by dual photoredox and Ti catalysis (this work).

was identified as another promising catalyst for the formation of propargyl— or allenyl—Ni species in cross-coupling reactions. Recently, an attractive reaction system using Co/photoredox catalysts was described by the Meng group for the synthesis of homopropargylic alcohols via a propargyl—Co intermediate. Although plenty of progress was made, the radical propargylation between 1,3-enyne and aldehyde, catalyzed by dual photoredox/titanium, remains undefined.

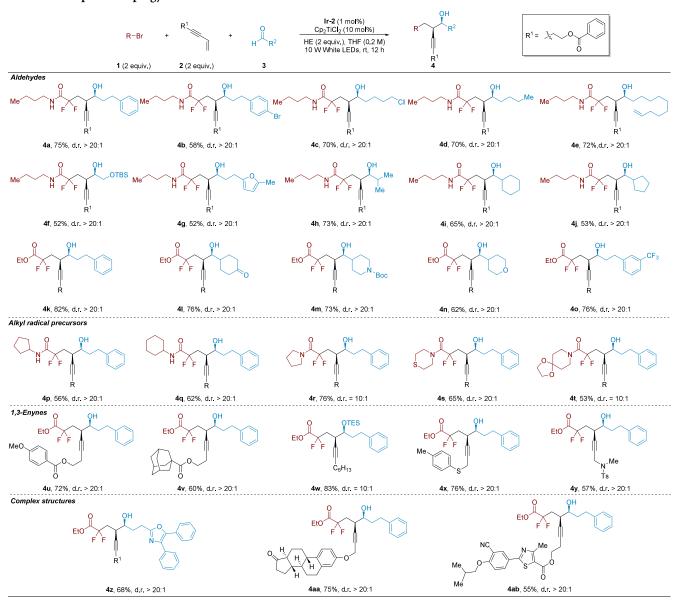
With these advancements, we anticipated that under photoreductive conditions the $Cp_2Ti^{III}Cl$ and alkyl radical would be generated via a SET process. 1,3-Enynes could act as efficient radical acceptors to trap the alkyl radicals and forge two equilibrated species, the propargylic radical and allenylic radical, which were then captured by Ti^{III} to give the nucleophilic propargyl— and allenyl— Ti^{IV} complexes, respectively (Figure 1d). This radical-based three-component approach enables two new C—C bonds to be constructed simultaneously and features a green catalyst, easily accessible starting materials, high diastereoselectivity, tolerant reaction conditions, and thus a broad substrate scope.

We began our investigation of this radical-based three-component propargylation using difluoroacetamide (1a), 1,3-

enyne (2a), and benzenepropanal (3a) as representative substrates under photoconditions (Table 1). Initially, this

Table 1. Reaction Optimization^a

as shown Ir-1 instead of Ir-2 4CzIPN instead of Ir-2 Ru-1 instead of Ir-2	81 70 56	>20:1 >20:1 >20:1
4CzIPN instead of Ir-2	56	
		>20:1
Ru-1 instead of Ir-2	0	
	O	
450 nm LEDs	56	>20:1
400 nm LEDs	51	>20:1
DCE instead of THF	55	>20:1
DCM instead of THF	62	>20:1
1,4-dioxane instead of THF	69	>20:1
MeCN instead of THF	43	>20:1
DMF instead of THF	0	
CpTiCl ₃ instead of Cp ₂ TiCl ₂	37	>20:1
salen-Ti instead of Cp2TiCl2	0	
no Cp2TiCl2, PC, hv, or HE	0	
	400 nm LEDs DCE instead of THF DCM instead of THF 1,4-dioxane instead of THF MeCN instead of THF DMF instead of THF CpTiCl ₃ instead of Cp ₂ TiCl ₂ salen—Ti instead of Cp ₂ TiCl ₂	400 nm LEDs51DCE instead of THF55DCM instead of THF621,4-dioxane instead of THF69MeCN instead of THF43DMF instead of THF0 $CpTiCl_3$ instead of Cp_2TiCl_2 37salen—Ti instead of Cp_2TiCl_2 0no Cp_2TiCl_2 , PC, hv, or HE0


$$\begin{picture}(20,10) \put(0,0){\line(1,0){150}} \put(0,0){\line(1,0){15$$

^aGeneral reaction conditions: 1a (0.4 mmol), 2a (0.4 mmol), 3a (0.2 mmol), Cp₂TiCl₂ (10 mol %), Ir-2 (1 mol %), HE (2 equiv), THF (0.2 M), 10 W white LEDs, N₂ atmosphere, rt, 12 h. ^bYields were determined by ¹H NMR spectroscopy vs an internal standard (1,3,5-trimethoxybenzene). ^cThe diastereoselectivity was determined by ¹H NMR.

reaction was performed with Ir-2 (1 mol %) as the photocatalyst, Cp₂TiCl₂ (10 mol %) as the metal catalyst, Hantsch ester (HE, 2 equiv) as the electron and H⁺ donor, and THF (0.2 M) as the solvent under 10 W white LEDs at room temperature for 12 h. To our delight, three-component coupling product 4a was successfully obtained in 81% yield with a >20:1 dr (entry 1). Subsequently, we proceeded with the comprehensive screening of various factors. Replacing Ir-2 with Ir-1 and 4CzIPN caused a markedly reduced yield (entries 2 and 3, respectively), and Ru-1 restrained the reaction completely (entry 4). When the white LED was substituted with 450 and 400 nm blue LEDs, the yield partly decreased (entries 5 and 6, respectively). Then, several common solvents were screened, revealing a moderate (DCE, DCM, and 1,4-dioxane) to severe (MeCN and DMF) detrimental influence on the yield of product 4a (entries 7-11, respectively). Upon substitution of Cp2TiCl2 with CpTiCl3, a significant decrease in yield was observed (entry 12). Furthermore, when salen-Ti was used as the catalyst, the reaction did not proceed (entry 13). Control experiments demonstrated that all of the reaction parameters were necessary to achieve this carbonyl propargylation (entry 14).

With the optimized reaction conditions established, we proceeded to investigate the scope of the three-component

Scheme 1. Scope of Propargylation Reactions a,b,c

"Reagents and conditions: 1 (0.4 mmol), 2 (0.4 mmol), 3 (0.2 mmol), Ir-2 (1 mol %), Cp₂TiCl₂ (10 mol %), HE (0.4 mmol), THF (1.0 mL, 0.2 M), 10 W white LEDs, rt, 12 h. Isolated yields. "MeCN instead of THF was used for the synthesis of compounds 4k-4o and 4u-4ab. "dr was determined by "1H NMR.

propargylation under the dual photoredox/titanium catalytic system, as shown in Scheme 1. Generally, various aliphatic aldehydes could be adapted well in this radical-based process. Halides such as Cl (4c) and Br (4b) and a long chain alkyl (4d) were all tolerated. Potential alkyl radical acceptors such as alkenyl (4e) were shown to have no significant effect on this process. Acid-sensitive groups such as OTBS (4f) groups were easily allowed to deliver the propargylation products in good to excellent yields with high diastereoselectivity (>20:1). Aldehyde containing a heterocyclic structure is also highly compatible with the process (4g). The secondary (or cyclic) aldehydes (4h-4j) were also engaged in this protocol, and the results showed that most of these aldehydes were smoothly converted into the desired products in satisfactory yields and diastereoselectivity. Besides, when using MeCN as the solvent, ethyl difluorobromoacetate was also used effectively to furnish the propargylation products in good yields with impressive

diastereoselectivity (>20:1) under the optimized conditions (4k). When using ethyl difluorobromoacetate as a radical precursor, a strong electron-withdrawing group (4o) can also be adapted well in the process. The cyclic aldehydes (4l-4n) were also successfully converted into the desired product.

With regard to the alkyl radical precursors, numerous difluorobromoacetamides demonstrate compatibility with this reaction system (4p-4t). In addition, numerous 1,3-enynes substituted with multiple groups were successfully used as alkyl radical acceptors to generate the corresponding radicals in situ and then participate in the following addition step with aldehyde. Ester (4u and 4v)-, long chain alkyl (4w)-, thioether (4x)-, and TsN (4y)-substituted 1,3-enynes were all shown to be attractive coupling partners to give the desired products in moderate to excellent yields with distinguished diastereoselectivity.

Encouraged by these successful results, we focused our attention on studying the practicability of our protocol for the late-stage modification of structurally complicated compounds that comprised marketed drug molecules and natural products. The aliphatic aldehyde derived from oxaprozin (4z) proved to be tolerated, as well. Moreover, estrone and febuxostat were verified to be usable, delivering potentially valuable products 4aa and 4ab, respectively, in favorable yields and excellent diastereoselectivity without an effect of multiple functional groups. All of the results highlighted the good functional group compatibility of our protocol, since even in the presence of an ester, a ketone, or a cyano group, only the aldehyde was selectively functionalized.

To further shed light on the possible mechanism of this process, a suite of experiments were conducted. Control experiments in the absence of Cp_2TiCl_2 were performed. In this case, the desired product was not detected and the reduction product (5) of the propargylic radical was isolated in 73% yield (Figure 2a), which accounted for the fact that the

Figure 2. Control experiments.

propargylic radical was difficult to add to carbonyl of aldehyde and easily reduced without Cp_2TiCl_2 . Meanwhile, the radical clock experiment using 2-phenylcyclopropane-1-carbaldehyde (6) as a substrate was successfully conducted (Figure 2b). The desired three-compounent coupling products were isolated as a mixture of 7a and 7b in 52% yield (1.6:1 ratio), suggesting that the ketyl radical intermediates were not likely involved and the products were generated via addition between the allenyl— Ti^{IV} complex and aldehydes.

Overall, the catalytic cycle is proposed in Figure 3. HE was oxidized by excited-state *Ir^{III} to deliver HE•+ and strong reductant Ir^{II}, which was then oxidized by Cp₂TiCl₂ to give ground-state Ir^{III} and Cp₂Ti^{III}Cl. Meanwhile, difluoroacetamide/ethyl difluorobromoacetate was reduced by another *Ir^{III} to generate related alkyl radical R•, which then added to 1,3-enyne rapidly, forming propargylic radical I. Immediately, species I was captured by Ti^{III}, producing Ti^{IV}—propargyl II and allenyl—Ti^{IV} III. The dynamic equilibrium between II and III favored the transition to intermediate III, which acted as a nucleophile to attack the carbonyl of aldehyde via a sixmembered chelate-type ring transition state to give the titanium alkoxide species in a *syn*-selective fashion. After being hydrolyzed by PyH+ to deliver the desired three-

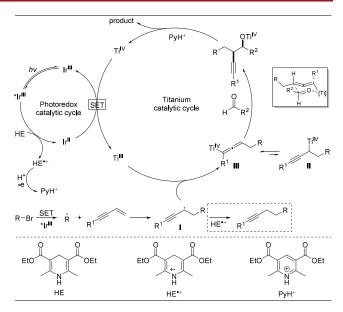


Figure 3. Proposed mechanism.

component propargylation product and release Ti^{IV}, the catalytic cycle reached completion.

In summary, we herein successfully established a robust strategy that enables the addition of the nucleophilic allenyl—titanium complex to abundant aldehydes, delivering highly valuable homopropargylic alcohols via dual photoredox/titanium catalysis. Numerous alkyl radical precursors, 1,3-enynes, as well as broad applicability toward aliphatic aldehydes bearing multiple functional groups were presented. Preliminary mechanistic studies suggested a radical-polar crossover mechanism through the intermediary of either propargyl— or allenyl—Ti^{IV} species.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.5c00719.

Experimental details, characterization data of compounds, and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

Lei Shi — School of Chemistry, Dalian University of Technology, Dalian 116024, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; orcid.org/0000-0002-2644-1168; Email: shilei17@dlut.edu.cn

Xiao Feng — School of Chemistry, Dalian University of Technology, Dalian 116024, China; orcid.org/0000-0002-3055-0172; Email: xiaof@dlut.edu.cn

Authors

Xuehan Qi – School of Chemistry, Dalian University of Technology, Dalian 116024, China

Renxu Cao – School of Chemistry, Dalian University of Technology, Dalian 116024, China

- Zhixian Wu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- Jing-ran Shan Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States; orcid.org/0009-0007-7968-7595
- Fusheng Li School of Chemistry, Dalian University of Technology, Dalian 116024, China; orcid.org/0000-0002-5086-2130

Er-jun Hao — School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; orcid.org/0000-0001-5821-8465

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.5c00719

Funding

The project is supported by the National Natural Science Foundation of China (22471029 and 22171036), the Natural Science Foundation of Henan Province (232300421126), and the Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University (2020YB03).

Notes

The authors declare no competing financial interest.

REFERENCES

- (1) Trost, B. M. The Atom Economy—A Search for Synthetic Efficiency. *Science* **1991**, 254, 1471–1477.
- (2) Yu, S.; Ma, S. Allenes in Catalytic Asymmetric Synthesis and Natural Product Syntheses. *Angew. Chem., Int. Ed.* **2012**, *51*, 3074–3112.
- (3) Ding, C.-H.; Hou, X.-L. Catalytic Asymmetric Propargylation. Chem. Rev. 2011, 111, 1914–1937.
- (4) Wisniewska, H. M.; Jarvo, E. R. Enantioselective Propargylation and Allenylation Reactions of Ketones and Imines. *Journal of Organic Chemistry* **2013**, *78*, 11629–11636.
- (5) Marshall, J. A. Chiral Allylic and Allenic Stannanes as Reagents for Asymmetric Synthesis. *Chem. Rev.* **1996**, *96*, 31–48.
- (6) Thaima, T.; Zamani, F.; Hyland, C. J.; Pyne, S. G. Allenylation and propargylation reactions of ketones, aldehydes, imines, and iminium ions using organoboronates and related derivatives. *Synthesis* **2017**, *49*, 1461–1480.
- (7) Shi, B.; Xiao, M.; Zhao, J.-P.; Zhang, Z.; Xiao, W.-J.; Lu, L.-Q. Synthesis of Chiral Endocyclic Allenes and Alkynes via Pd-Catalyzed Asymmetric Higher-Order Dipolar Cycloaddition. *J. Am. Chem. Soc.* **2024**, *146*, 26622–26629.
- (8) Denmark, S. E.; Wynn, T. Lewis base activation of lewis acids: catalytic enantioselective allylation and propargylation of aldehydes. *J. Am. Chem. Soc.* **2001**, *123*, 6199–6200.
- (9) Bieber, L. W.; da Silva, M. F.; da Costa, R. C.; Silva, L. O. Zinc Barbier reaction of propargyl halides in water. *Tetrahedron letters* **1998**, *39*, 3655–3658.
- (10) Miao, W.; Lu, W.; Chan, T. H. Remarkable 1, 6-acyclic diastereoselection in the coupling of a novel butadienyl di-indium compound with aldehydes. *J. Am. Chem. Soc.* **2003**, *125*, 2412–2413.
- (11) Inoue, M.; Nakada, M. Studies on Catalytic Asymmetric Nozaki— Hiyama Propargylation. *Org. Lett.* **2004**, *6*, 2977–2980.
- (12) Liu, Q.; Zheng, J.; Zhang, X.; Ma, S. Photo and copper dual catalysis for allene syntheses from propargylic derivatives via one-electron process. *Nat. Commun.* **2022**, *13*, 3302.
- (13) Zhang, Z.; Richrath, R. B.; Gansäuer, A. Merging Catalysis in Single Electron Steps with Photoredox Catalysis—Efficient and Sustainable Radical Chemistry. *ACS Catal.* **2019**, *9*, 3208–3212.
- (14) Zhang, Y. Q.; Bohle, F.; Bleith, R.; Schnakenburg, G.; Grimme, S.; Gansauer, A. Synthesis of 1,3-Amino Alcohols by Hydroxy-

- Directed Aziridination and Aziridine Hydrosilylation. *Angew. Chem., Int. Ed.* **2018**, *57*, 13528–13532.
- (15) Millán, A.; de Cienfuegos, L. Á.; Martín-Lasanta, A.; Campaña, A. G.; Cuerva, J. M. Titanium/Palladium-Mediated Regioselective Propargylation of Ketones using Propargylic Carbonates as Pronucleophiles. *Adv. Synth. Catal.* **2011**, *353*, 73–78.
- (16) Yatsumonji, Y.; Sugita, T.; Tsubouchi, A.; Takeda, T. Preparation of syn-Tertiary Homoallylic Alcohols Utilizing Allenyltitanocenes Generated by Reductive Titanation of γ -Trimethylsilylpropargylic Carbonates. *Org. Lett.* **2010**, *12*, 1968–1971.
- (17) Takeda, T.; Ando, M.; Sugita, T.; Tsubouchi, A. Titanocene-(II)-Promoted, One-Pot, Three-Component Coupling of Thioacetals, Alkynyl Sulfones, and Carbonyl Compounds: Highly Stereoselective Formation of tert-Homopropargyl Alcohols. *Org. Lett.* **2007**, *9*, 2875–2878
- (18) Takeda, T.; Yatsumonji, Y.; Nishimura, T.; Sugita, T.; Tsubouchi, A. Highly Stereoselective Construction of Multiple Stereogenic Centers Using Allylic Sulfides. *Phosphorus, Sulfur, and Silicon and the Related Elements* **2011**, *186*, 1229–1233.
- (19) Song, Y.; Okamoto, S.; Sato, F. Highly Stereoselective Asymmetric Construction of an Acyclic Carbon Skeleton Having Two Adjacent Alkyl Substituents by Michael Addition of Optically Active Allenyltitaniums to Alkylidenemalonates. *Org. Lett.* **2001**, *3*, 3543–3545.
- (20) Li, S.; Zhu, H.; Li, L.; Chen, W.; Jiang, J.; Qu, Z. W.; Grimme, S.; Zhang, Y. Q. A Nuclearity-Dependent Enantiodivergent Epoxide Opening via Enthalpy-Controlled Mononuclear and Entropy-Controlled Dinuclear (Salen)Titanium Catalysis. *Angew. Chem., Int. Ed.* **2023**, *62*, No. e202309525.
- (21) Pang, X.; Su, P. F.; Shu, X. Z. Reductive Cross-Coupling of Unreactive Electrophiles. *Acc. Chem. Res.* **2022**, *55*, 2491–2509.
- (22) Xie, H.; Wang, S.; Wang, Y.; Guo, P.; Shu, X.-Z. Ti-Catalyzed Reductive Dehydroxylative Vinylation of Tertiary Alcohols. *ACS Cataly* **2022**, *12*, 1018–1023.
- (23) Han, B.; Ren, C.; Jiang, M.; Wu, L. Titanium-Catalyzed Exhaustive Reduction of Oxo-Chemicals. *Angew. Chem., Int. Ed.* **2022**, *61*, No. e202209232.
- (24) Wang, H.; Zeng, T.; Chang, W.; Liu, L.; Li, J. Au(I)/(R)-BINOL-Ti(IV) Concerted Catalyzed Asymmetric Cascade Cycloaddition Reaction of Arylalkynols. *Org. Lett.* **2021**, *23*, 3573–3577.
- (25) Zheng, S.; Jian, Y.; Xu, S.; Wu, Y.; Sun, H.; Zhang, G.; Zhang, W.; Gao, Z. N-Donor ligand activation of titanocene for the Biginelli reaction via the imine mechanism. *RSC Adv.* **2018**, *8*, 8657–8661.
- (26) Shao, P.; Wang, S.; Du, G.; Xi, C. Cp 2 TiCl 2-catalyzed hydrocarboxylation of alkynes with CO 2: formation of α , β -unsaturated carboxylic acids. *RSC Adv.* **2017**, *7*, 3534–3539.
- (27) Hao, E.; Lu, B.; Liu, Y.; Yang, T.; Yan, H.; Ding, X.; Jin, Y.; Shi, L. J. O. L. Difunctionalization of 1,3-Butadiene via Sequential Radical Thiol-ene Reaction and Allylation by Dual Photoredox and Titanium Catalysis. *Org. Lett.* **2023**, *25*, 5094–5099.
- (28) Liu, Y.; Wu, Z.; Shan, J.-R.; Yan, H.; Hao, E.-J.; Shi, L. J. N. C. Titanium catalyzed $[2\sigma + 2\pi]$ cycloaddition of bicyclo[1.1.0]-butanes with 1,3-dienes for efficient synthesis of stilbene bioisosteres. *Nat. Commun.* **2024**, *15*, 4374.
- (29) Yan, H.; Liao, Q.; Chen, Y.; Gurzadyan, G. G.; Lu, B.; Wu, C.; Shi, L. J. A. C. I. E. Photocatalytic metal hydride hydrogen atom transfer mediated allene functionalization by cobalt and titanium dual catalysis. *Angew. Chem., Int. Ed.* **2023**, *62*, e202302483.
- (30) Yan, H.; Shan, J.-R.; Zhang, F.; Chen, Y.; Zhang, X.; Liao, Q.; Hao, E.; Shi, L. J. O. L. Radical Crotylation of Aldehydes with 1, 3-Butadiene by Photoredox Cobalt and Titanium Dual Catalysis. *Org. Lett.* **2023**, 25, 7694–7699.
- (31) Guo, P.; Wang, K.; Jin, W.-J.; Xie, H.; Qi, L.; Liu, X.-Y.; Shu, X.-Z. Dynamic Kinetic Cross-Electrophile Arylation of Benzyl Alcohols by Nickel Catalysis. *J. Am. Chem. Soc.* **2021**, *143*, 513–523.
- (32) Xie, H.; Wang, S.; Shu, X.-Z. C-OH Bond Activation for Stereoselective Radical C-Glycosylation of Native Saccharides. *J. Am. Chem. Soc.* **2024**, *146*, 32269–32275.

- (33) Furuta, K.; Ishiguro, M.; Haruta, R.; Ikeda, N.; Yamamoto, H. Regio- and Stereocontrolled Synthesis of Allenic and Acetylenic Derivatives. Organotitanium and Boron Reagents. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 2768–2776.
- (34) Nakagawa, T.; Kasatkin, A.; Sato, F. Highly efficient synthesis of propargyl- and allenyltitanium reagents from propargyl halides or propargyl alcohol derivatives. Practical synthesis of allenyl and homopropargyl alcohols. *Tetrahedron Lett.* **1995**, *36*, 3207–3210.
- (35) Nugent, W. A.; RajanBabu, T. V. Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins. *J. Am. Chem. Soc.* **1988**, *110*, 8561–8562.
- (36) RajanBabu, T. V.; Nugent, W. A. Selective Generation of Free Radicals from Epoxides Using a Transition-Metal Radical. A Powerful New Tool for Organic Synthesis. *J. Am. Chem. Soc.* **1994**, *116*, 986–997.
- (37) Tomida, Y.; Nagaki, A.; Yoshida, J.-i. Asymmetric carbolithiation of conjugated enynes: a flow microreactor enables the use of configurationally unstable intermediates before they epimerize. *J. Am. Chem. Soc.* **2011**, *133*, 3744–3747.
- (38) Mori, Y.; Onodera, G.; Kimura, M. Ni-Catalyzed Three-component Coupling Reaction of Conjugated Enyne, Carbonyls, and Dimethylzinc to Construct Allenyl Alcohols. *Chem. Lett.* **2014**, 43, 97–99.
- (39) Lou, Y.; Lin, Z.; Wu, C.; Nong, Z.-S.; Liu, R.; Gong, L.-Z. Enantioselective Synthesis of Chiral 1, 4-Enynes via Palladium-Catalyzed Branch-Selective Allylic C–H Alkylation. *ACS Catal.* **2024**, 14, 14855–14862.
- (40) Li, S.; Yuan, K.; Zhang, G.; Guo, R. Recent Advances in the Synthesis of Chiral Allenes via Asymmetric 1, 4-Difunctionalization of 1, 3-Enynes. *Eur. J. Org. Chem.* **2024**, *27*, No. e202301316.
- (41) Wang, P.-Z.; Zhang, Z.; Jiang, M.; Chen, J.-R.; Xiao, W.-J. A General Copper-Box System for the Asymmetric Arylative Functionalization of Benzylic, Propargylic or Allenylic Radicals. *Angew. Chem., Int. Ed.* **2024**, *63*, No. e202411469.
- (42) Gu, Z.-Y.; Li, W.-D.; Li, Y.-L.; Cui, K.; Xia, J.-B. Selective Reductive Coupling of Vinyl Azaarenes and Alkynes via Photoredox Cobalt Dual Catalysis. *Angew. Chem., Int. Ed.* **2023**, 62, No. e202213281.
- (43) Huang, H. M.; Bellotti, P.; Daniliuc, C. G.; Glorius, F. Radical carbonyl propargylation by dual catalysis. *Angew. Chem., Int. Ed.* **2021**, 60, 2464–2471.
- (44) Zhang, F.-H.; Guo, X.; Zeng, X.; Wang, Z. Asymmetric 1, 4-functionalization of 1, 3-enynes via dual photoredox and chromium catalysis. *Nat. Commun.* **2022**, *13*, 5036.
- (45) Zeng, Y.; Chiou, M.-F.; Zhu, X.; Cao, J.; Lv, D.; Jian, W.; Li, Y.; Zhang, X.; Bao, H. Copper-catalyzed enantioselective radical 1, 4-difunctionalization of 1, 3-enynes. *J. Am. Chem. Soc.* **2020**, *142*, 18014–18021.
- (46) Dong, X. Y.; Zhan, T. Y.; Jiang, S. P.; Liu, X. D.; Ye, L.; Li, Z. L.; Gu, Q. S.; Liu, X. Y. Copper-catalyzed asymmetric coupling of allenyl radicals with terminal alkynes to access tetrasubstituted allenes. *Angew. Chem.* **2021**, *133*, 2188–2192.
- (47) Chen, Y.; Wang, J.; Lu, Y. Decarboxylative 1, 4-carbocyanation of 1, 3-enynes to access tetra-substituted allenes via copper/photoredox dual catalysis. *Chemical science* **2021**, *12*, 11316–11321.
- (48) Zhang, K. F.; Bian, K. J.; Li, C.; Sheng, J.; Li, Y.; Wang, X. S. Nickel-catalyzed carbofluoroalkylation of 1, 3-enynes to access structurally diverse fluoroalkylated allenes. *Angew. Chem., Int. Ed.* **2019**, *58*, 5069–5074.
- (49) Liu, W.; Liu, C.; Wang, M.; Kong, W. Modular synthesis of multifunctionalized CF3-allenes through selective activation of saturated hydrocarbons. *ACS Catal.* **2022**, *12*, 10207–10221.
- (50) Wang, L.; Lin, C.; Chong, Q.; Zhang, Z.; Meng, F. Photoredox cobalt-catalyzed regio-, diastereo-and enantioselective propargylation of aldehydes via propargyl radicals. *Nat. Commun.* **2023**, *14*, 4825.