
Dual Photoredox- and Titanium Catalysis-Enabled Three-
Component Radical Propargylation of Aldehydes with 1,3-Enynes
Xuehan Qi, Renxu Cao, Zhixian Wu, Jing-ran Shan, Fusheng Li, Er-jun Hao, Xiao Feng,* and Lei Shi*

Cite This: Org. Lett. 2025, 27, 3332−3337 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Herein, a straightforward and practical strategy involving radicals for the three-component carbonyl propargylation
via dual photoredox and titanium catalysis is presented. This strategy delivers homopropargyl alcohols and includes readily available
starting materials, a broad substrate scope, high functional group tolerance, and mild reaction conditions. Catalytic Cp2TiCl2,
recognized as an inexpensive, nontoxic, and bench-stable titanium source, is employed.

Developing eco-friendly and efficient synthetic strategies
has been always a fundamental pursuit in organic

chemistry.1 Propargylic compounds, such as homopropargylic
alcohols/amines and their derivatives, serve as crucial building
blocks for the synthesis of numerous pharmaceuticals and
biologically active natural products (Figure 1a).2 The addition
of π-propargylic or allenylic metal reagents to carbonyls is
recognized as an essential and straightforward approach to
construct versatile homopropargylic compounds.3−6 Propargyl
halides and alcohol derivatives proved to be preeminent
precursors when Pd,7 Sn,8 Zn,9 In,10 Cr,11 and Cu12 were
employed as catalysts.
As the second most abundant transition metal in the Earth’s

crust, titanium stands out as an appealing option for catalytic
applications due to its versatility, affordability, low toxicity, and
well-established biocompatibility. Although titanium chemistry
has been recognized primarily for its significant role in
polyethylene production over the past two decades, its
contributions to fine chemical synthesis have garnered
increasing attention. Titanium catalysis has facilitated the
development of a variety of catalytically active systems,
allowing for substrate transformations across nearly all
oxidation states of titanium and promoting the synthesis of
numerous novel compounds. Titanium reagents, such as
Ti(OiPr)4 and Cp2TiCl2, have been widely recognized as
green and abundant catalysts and applied to various practical
methodologies in modern synthetic chemistry.13−32

Addition of an allenyl−titanium complex to carbonyl was
used to synthesize homopropargylic alcohol derivatives (Figure
1b). Usually, the propargyl−titanium or allenyl−titanium
complexes were prepared by treating the substituted propyne
derivatives with tert-butyllithium, forming lithio propargylic
intermediates, which subsequently underwent a transmetalliza-

tion of the lithium ion with Ti(OiPr)4.
33 Additionally, titanium

species can be also generated through ligand exchange and
subsequent elimination between divalent titanium reagent
Ti(OiPr)4/iPrMgBr and propargyl halides or alcohol deriva-
tives.34 These mechanisms essentially involve a two-electron
transfer process. Given that Cp2TiIIICl has been identified as a
powerful one-electron reductant, we wondered whether
propargyl−titanium complexes can be generated via single-
electron transfer (SET) between Cp2TiIIICl and propargylic
radicals from 1,3-enynes.35,36

1,3-Enynes and derivatives have attracted significant interest
for their possibilities of preparing multifunctional substituted
homopropargylic and allenylic products.37−42 Recently, tran-
sition metals, such as Cr, Ni, and Cu, were used as high-
efficiency catalysts to capture propargylic radicals by the SET
process, forming propargyl− or allenyl−metal species (Figure
1c). For example, dual Cr/photoredox catalytic systems were
developed by the Glorius and Wang groups via a radical-polar
crossover mechanism, involving propargyl− and allenyl−Cr
species and giving carbonyl propargylation and allenylation
products, respectively.43,44 The Bao and Liu groups independ-
ently reported the fascinating Cu-catalyzed enantioselective
synthesis of chiral allenes via the radical 1,4-dicarbonization of
1,3-enynes.45,46 Lu and co-workers reported a strategy for 1,4-
alkylcyanation of 1,3-enynes with redox-active esters by
merged photoredox and copper catalysis.47 Besides, nickel
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was identified as another promising catalyst for the formation
of propargyl− or allenyl−Ni species in cross-coupling
reactions.48,49 Recently, an attractive reaction system using
Co/photoredox catalysts was described by the Meng group for
the synthesis of homopropargylic alcohols via a propargyl−Co
intermediate.50 Although plenty of progress was made, the
radical propargylation between 1,3-enyne and aldehyde,
catalyzed by dual photoredox/titanium, remains undefined.
With these advancements, we anticipated that under

photoreductive conditions the Cp2TiIIICl and alkyl radical
would be generated via a SET process. 1,3-Enynes could act as
efficient radical acceptors to trap the alkyl radicals and forge
two equilibrated species, the propargylic radical and allenylic
radical, which were then captured by TiIII to give the
nucleophilic propargyl− and allenyl−TiIV complexes, respec-
tively (Figure 1d). This radical-based three-component
approach enables two new C−C bonds to be constructed
simultaneously and features a green catalyst, easily accessible
starting materials, high diastereoselectivity, tolerant reaction
conditions, and thus a broad substrate scope.
We began our investigation of this radical-based three-

component propargylation using difluoroacetamide (1a), 1,3-

enyne (2a), and benzenepropanal (3a) as representative
substrates under photoconditions (Table 1). Initially, this

reaction was performed with Ir-2 (1 mol %) as the
photocatalyst, Cp2TiCl2 (10 mol %) as the metal catalyst,
Hantsch ester (HE, 2 equiv) as the electron and H+ donor, and
THF (0.2 M) as the solvent under 10 W white LEDs at room
temperature for 12 h. To our delight, three-component
coupling product 4a was successfully obtained in 81% yield
with a >20:1 dr (entry 1). Subsequently, we proceeded with
the comprehensive screening of various factors. Replacing Ir-2
with Ir-1 and 4CzIPN caused a markedly reduced yield
(entries 2 and 3, respectively), and Ru-1 restrained the
reaction completely (entry 4). When the white LED was
substituted with 450 and 400 nm blue LEDs, the yield partly
decreased (entries 5 and 6, respectively). Then, several
common solvents were screened, revealing a moderate
(DCE, DCM, and 1,4-dioxane) to severe (MeCN and DMF)
detrimental influence on the yield of product 4a (entries 7−11,
respectively). Upon substitution of Cp2TiCl2 with CpTiCl3, a
significant decrease in yield was observed (entry 12).
Furthermore, when salen−Ti was used as the catalyst, the
reaction did not proceed (entry 13). Control experiments
demonstrated that all of the reaction parameters were
necessary to achieve this carbonyl propargylation (entry 14).
With the optimized reaction conditions established, we

proceeded to investigate the scope of the three-component

Figure 1. (a) Homopropargylic alcohols in pharmaceuticals and
biologically active natural products. (b) Previously reported methods
for the synthesis of propargyl−titanium or allenyl−titanium
complexes. (c) Radical functionalization of 1,3-enyne and carbonyl.
(d) Radical carbonyl propargylation by dual photoredox and Ti
catalysis (this work).

Table 1. Reaction Optimizationa

entry variation from the standard conditions yield of 4a (%)b drc

1 as shown 81 >20:1
2 Ir-1 instead of Ir-2 70 >20:1
3 4CzIPN instead of Ir-2 56 >20:1
4 Ru-1 instead of Ir-2 0
5 450 nm LEDs 56 >20:1
6 400 nm LEDs 51 >20:1
7 DCE instead of THF 55 >20:1
8 DCM instead of THF 62 >20:1
9 1,4-dioxane instead of THF 69 >20:1
10 MeCN instead of THF 43 >20:1
11 DMF instead of THF 0
12 CpTiCl3 instead of Cp2TiCl2 37 >20:1
13 salen−Ti instead of Cp2TiCl2 0
14 no Cp2TiCl2, PC, hv, or HE 0

aGeneral reaction conditions: 1a (0.4 mmol), 2a (0.4 mmol), 3a (0.2
mmol), Cp2TiCl2 (10 mol %), Ir-2 (1 mol %), HE (2 equiv), THF
(0.2 M), 10 W white LEDs, N2 atmosphere, rt, 12 h.

bYields were
determined by 1H NMR spectroscopy vs an internal standard (1,3,5-
trimethoxybenzene). cThe diastereoselectivity was determined by 1H
NMR.
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propargylation under the dual photoredox/titanium catalytic
system, as shown in Scheme 1. Generally, various aliphatic
aldehydes could be adapted well in this radical-based process.
Halides such as Cl (4c) and Br (4b) and a long chain alkyl
(4d) were all tolerated. Potential alkyl radical acceptors such as
alkenyl (4e) were shown to have no significant effect on this
process. Acid-sensitive groups such as OTBS (4f) groups were
easily allowed to deliver the propargylation products in good to
excellent yields with high diastereoselectivity (>20:1).
Aldehyde containing a heterocyclic structure is also highly
compatible with the process (4g). The secondary (or cyclic)
aldehydes (4h−4j) were also engaged in this protocol, and the
results showed that most of these aldehydes were smoothly
converted into the desired products in satisfactory yields and
diastereoselectivity. Besides, when using MeCN as the solvent,
ethyl difluorobromoacetate was also used effectively to furnish
the propargylation products in good yields with impressive

diastereoselectivity (>20:1) under the optimized conditions
(4k). When using ethyl difluorobromoacetate as a radical
precursor, a strong electron-withdrawing group (4o) can also
be adapted well in the process. The cyclic aldehydes (4l−4n)
were also successfully converted into the desired product.
With regard to the alkyl radical precursors, numerous

difluorobromoacetamides demonstrate compatibility with this
reaction system (4p−4t). In addition, numerous 1,3-enynes
substituted with multiple groups were successfully used as alkyl
radical acceptors to generate the corresponding radicals in situ
and then participate in the following addition step with
aldehyde. Ester (4u and 4v)-, long chain alkyl (4w)-, thioether
(4x)-, and TsN (4y)-substituted 1,3-enynes were all shown to
be attractive coupling partners to give the desired products in
moderate to excellent yields with distinguished diastereose-
lectivity.

Scheme 1. Scope of Propargylation Reactionsa,b,c

aReagents and conditions: 1 (0.4 mmol), 2 (0.4 mmol), 3 (0.2 mmol), Ir-2 (1 mol %), Cp2TiCl2 (10 mol %), HE (0.4 mmol), THF (1.0 mL, 0.2
M), 10 W white LEDs, rt, 12 h. Isolated yields. bMeCN instead of THF was used for the synthesis of compounds 4k−4o and 4u−4ab. cdr was
determined by 1H NMR.
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Encouraged by these successful results, we focused our
attention on studying the practicability of our protocol for the
late-stage modification of structurally complicated compounds
that comprised marketed drug molecules and natural products.
The aliphatic aldehyde derived from oxaprozin (4z) proved to
be tolerated, as well. Moreover, estrone and febuxostat were
verified to be usable, delivering potentially valuable products
4aa and 4ab, respectively, in favorable yields and excellent
diastereoselectivity without an effect of multiple functional
groups. All of the results highlighted the good functional group
compatibility of our protocol, since even in the presence of an
ester, a ketone, or a cyano group, only the aldehyde was
selectively functionalized.
To further shed light on the possible mechanism of this

process, a suite of experiments were conducted. Control
experiments in the absence of Cp2TiCl2 were performed. In
this case, the desired product was not detected and the
reduction product (5) of the propargylic radical was isolated in
73% yield (Figure 2a), which accounted for the fact that the

propargylic radical was difficult to add to carbonyl of aldehyde
and easily reduced without Cp2TiCl2. Meanwhile, the radical
clock experiment using 2-phenylcyclopropane-1-carbaldehyde
(6) as a substrate was successfully conducted (Figure 2b). The
desired three-compounent coupling products were isolated as a
mixture of 7a and 7b in 52% yield (1.6:1 ratio), suggesting that
the ketyl radical intermediates were not likely involved and the
products were generated via addition between the allenyl−TiIV
complex and aldehydes.
Overall, the catalytic cycle is proposed in Figure 3. HE was

oxidized by excited-state *IrIII to deliver HE•+ and strong
reductant IrII, which was then oxidized by Cp2TiCl2 to give
ground-state IrIII and Cp2TiIIICl. Meanwhile, difluoroaceta-
mide/ethyl difluorobromoacetate was reduced by another *IrIII
to generate related alkyl radical R•, which then added to 1,3-
enyne rapidly, forming propargylic radical I. Immediately,
species I was captured by TiIII, producing TiIV−propargyl II
and allenyl−TiIV III. The dynamic equilibrium between II and
III favored the transition to intermediate III, which acted as a
nucleophile to attack the carbonyl of aldehyde via a six-
membered chelate-type ring transition state to give the
titanium alkoxide species in a syn-selective fashion. After
being hydrolyzed by PyH+ to deliver the desired three-

component propargylation product and release TiIV, the
catalytic cycle reached completion.
In summary, we herein successfully established a robust

strategy that enables the addition of the nucleophilic allenyl−
titanium complex to abundant aldehydes, delivering highly
valuable homopropargylic alcohols via dual photoredox/
titanium catalysis. Numerous alkyl radical precursors, 1,3-
enynes, as well as broad applicability toward aliphatic
aldehydes bearing multiple functional groups were presented.
Preliminary mechanistic studies suggested a radical-polar
crossover mechanism through the intermediary of either
propargyl− or allenyl−TiIV species.
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