教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中科院半导体所
学位: 博士
所在单位: 物理学院
电子邮箱: aiminl@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2015-12-01
发表刊物: APPLIED SURFACE SCIENCE
收录刊物: SCIE、EI
卷号: 357
页面范围: 1830-1835
ISSN号: 0169-4332
关键字: Solar cell; Black silicon; Nanostructure; TMAH modificationa
摘要: Traditional black silicon solar cells show relatively low efficiencies due to the high surface recombination occurring at the front surfaces. In this paper, we present a surface modification process to suppress surface recombination and fabricate highly efficient industrial black silicon solar cells. The Ag-nanoparticle-assisted etching is applied to realize front surface nanostructures on silicon wafers in order to reduce the surface reflectance. Through a further tetramethylammonium hydroxide (TMAH) treatment, the carrier recombination at and near the surface is greatly suppressed, due to a lower surface dopant concentration after the surface modification. This modified surface presents a low reflectivity in a range of 350-1100 nm. Large-area solar cells with an average conversion efficiency of 19.03% are achieved by using the TMAH treatment of 30 s. This efficiency is 0.18% higher than that of standard silicon solar cells with pyramidal surfaces, and also a remarkable improvement compared with black silicon solar cells without TMAH modifications. (C) 2015 Elsevier B.V. All rights reserved.