个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:物理学院
学科:等离子体物理
电子邮箱:amzhu@dlut.edu.cn
Renewable and high-concentration syngas production from oxidative reforming of simulated biogas with low energy cost in a plasma shade
点击次数:
论文类型:期刊论文
发表时间:2013-12-01
发表刊物:CHEMICAL ENGINEERING JOURNAL
收录刊物:SCIE、EI、Scopus
卷号:234
页面范围:240-246
ISSN号:1385-8947
关键字:Syngas; Biogas; Oxidative reforming; Plasma; Energy cost
摘要:A novel plasma shade with large reactive space generated by rotating spark channels was used for the first time for oxidative reforming of simulated biogas (CH4:CO2:O-2 = 3:2:2) to produce high-concentration syngas (CO + H-2) with low energy cost. This unique plasma exhibited rapid- and slow-zones where the conversion of O-2, CH4 and CO2 and dry-basis concentration of syngas (C-CO+H2(dry)) changed at two significantly different paces with specific energy input (SEI). With increasing SEI, the conversion and C-CO+H2(dry) first increased rapidly at SEI < 84 kJ/mol, while the conversion and C-CO+H2(dry) increased at a much slower pace at SEI > 84 kJ/mol. Moreover, V-shape profile of syngas energy cost (ECCO+H2dry) versus SEI was observed. Thereby, the optimal SEI was found at which the lowest ECCO+H2 (1.0 eV/molecule) and a very high C-CO+H2(dry) (73%) were simultaneously achieved. The good stability of the plasma reaction at the optimal SEI was verified over an 8-hour test. (C) 2013 Elsevier B.V. All rights reserved.