location: Current position: Home >> Scientific Research >> Paper Publications

A Method for Creating Microporous Carbon Materials with Excellent CO2-Adsorption Capacity and Selectivity

Hits:

Indexed by:期刊论文

Date of Publication:2014-01-01

Journal:CHEMSUSCHEM

Included Journals:SCIE、EI、PubMed、Scopus

Volume:7

Issue:1

Page Number:291-298

ISSN No.:1864-5631

Key Words:adsorption; gas separation; microporous materials; porogens; zinc

Abstract:A new synthetic approach for the fabrication of microporous materials (HCMs) by using discrete chelating zinc species as dynamic molecular porogens to create extra micropores that enhance their CO2-adsorption capacity and selectivity is reported. During the carbonization process, the evaporation of the in situ-formed Zn species would create additional nanochannels that contribute to the additional micropore volume for CO2 adsorption. The resultant HCMs show an increased number of micropores, with sizes in the range 0.7-1.0 nm and a high CO2-adsorption capacity of 5.4 mmolg(-1) (23.8 wt%) at 273 K and 3.8 mmolg(-1) (16.7 wt%) at 298 K and 1 bar, which are superior to those of most carbon-based adsorbents with N-doping or high specific surface areas. Dynamic gas-separation measurements, by using 16% CO2 in N-2 (v/v) as a feedstock, demonstrated that CO2 could be effectively separated from N-2 under ambient conditions and shows a high separation factor (SCO2/N-2 = 110) for CO2 over N-2, thereby reflecting a strongly competitive CO2-adsorption capacity. If the feedstock contained water vapor, the dynamic capacity of CO2 was almost identical to that measured under dry conditions, thus indicating that the carbon material had excellent tolerance to humidity. Easy CO2 release could be realized by purging an argon flow through the fixed-bed adsorber at 298 K, thus indicating good regeneration ability.

Pre One:Combination of a SnO2-C hybrid anode and a tubular mesoporous carbon cathode in a high energy density non-aqueous lithium ion capacitor: preparation and characterization

Next One:整体式多孔炭的制备及CO2分离性能研究