陆安慧

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:校长助理

其他任职:精细化工国家重点实验室副主任,辽宁省低碳资源高值化利用重点实验室主任

性别:男

毕业院校:中科院山西煤化所

学位:博士

所在单位:化工学院

学科:工业催化. 化学工艺. 能源化工

办公地点:大连市凌工路2号大连理工大学西部校区化工楼,邮编:116024

联系方式:0411-84986112

电子邮箱:anhuilu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Size dependent electrochemical detection of trace heavy metal ions based on nano-patterned carbon sphere electrodes

点击次数:

论文类型:期刊论文

发表时间:2016-07-14

发表刊物:NANOSCALE

收录刊物:SCIE、EI、PubMed、Scopus

卷号:8

期号:28

页面范围:13695-13700

ISSN号:2040-3364

摘要:The challenge in efficient electrochemical detection of trace heavy metal ions (HMI) for early warning is to construct an electrode with a nano-patterned architecture. In this study, a range of carbon electrodes with ordered structures were fabricated using colloidal hollow carbon nanospheres (HCSs) as sensing materials for trace HMI (represented by Pb(II)) detection by square wave anodic stripping voltammetry. The regular geometrical characteristics of the carbon electrode allow it to act as a model system for the estimation of electron transfer pathways by calculating contact points between HCSs and a glassy carbon electrode. A clear correlation between the contact points and the electron transfer resistance has been established, which fits well with the quadratic function model and is dependent on the size of HCSs. To our knowledge, this is the first clear function that expresses the structure-sensing activity relationship of carbon-based electrodes. The prepared carbon electrode is capable of sensing Pb(II) with a sensitivity of 0.160 mu A nM(-1), which is much higher than those of other electrodes reported in the literature. Its detection limit of 0.6 nM is far below the guideline value (72 nM) given by the US Environmental Protection Agency. In addition, the carbon electrode could be a robust alternative to various heavy metal sensors.