个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:校长助理
其他任职:精细化工国家重点实验室副主任,辽宁省低碳资源高值化利用重点实验室主任
性别:男
毕业院校:中科院山西煤化所
学位:博士
所在单位:化工学院
学科:工业催化. 化学工艺. 能源化工
办公地点:大连市凌工路2号大连理工大学西部校区化工楼,邮编:116024
联系方式:0411-84986112
电子邮箱:anhuilu@dlut.edu.cn
Direct, Selective Production of Aromatic Alcohols from Ethanol Using a Tailored Bifunctional Cobalt-Hydroxyapatite Catalyst
点击次数:
论文类型:期刊论文
发表时间:2019-08-01
发表刊物:ACS CATALYSIS
收录刊物:SCIE、EI
卷号:9
期号:8
页面范围:7204-7216
ISSN号:2155-5435
关键字:ethanol; aromatic alcohols; cobalt-hydroxyapatite; dehydrogenation; dehydrocyclization
摘要:Aromatic alcohols are essential components of many solvents, coatings, plasticizers, fine chemicals, and pharmaceuticals. Traditional manufacturing processes involving the oxidation of petroleum-derived aromatic hydrocarbons suffer from low selectivity due to facile overoxidation reactions which produce aromatic aldehydes, acids, and esters. Here we report a Co-containing hydroxyapatite (HAP) catalyst that converts ethanol directly to methylbenzyl alcohols (MB-OH, predominantly 2-MB-OH) at 325 degrees C. The dehydrogenation of ethanol to acetaldehyde, which is catalyzed by Co2+, has the highest reaction barrier. Acetaldehyde undergoes rapid, HAP-catalyzed condensation and forms the key intermediate, 2-butenal, which yields aromatic aldehydes through self-condensation and then MB-OH via hydrogenation. In the presence of Co2+, 2-butenal is selectively hydrogenated to 2-butenol. This reaction does not hinder aromatization because cross-coupling between 2-butenal and 2-butenol leads directly to MB-OH without passing through MB=O. Using these insights a dual-bed catalyst configuration was designed for use in a single reactor to improve the aromatic alcohol selectivity. Its successful use supports the proposed reaction mechanism.