陆安慧

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:校长助理

其他任职:精细化工国家重点实验室副主任,辽宁省低碳资源高值化利用重点实验室主任

性别:男

毕业院校:中科院山西煤化所

学位:博士

所在单位:化工学院

学科:工业催化. 化学工艺. 能源化工

办公地点:大连市凌工路2号大连理工大学西部校区化工楼,邮编:116024

联系方式:0411-84986112

电子邮箱:anhuilu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

硼基材料催化低碳烷烃氧化脱氢制烯烃研究进展

点击次数:

发表时间:2021-01-01

发表刊物:Huagong Jinzhan/Chemical Industry and Engineering Progress

卷号:40

期号:4

页面范围:1883-1892

ISSN号:1000-6613

摘要:The recent discovery of boron-based catalytic system, especially represented by boron nitride catalyst, exhibits high activity and selectivity to olefins with negligible formation of CO2 in oxidative dehydrogenation of light alkane reactions and has become a new hotspot worldwide. Herein, the recent progress of boron-based materials in oxidative dehydrogenation of light alkanes was summarized. The effects of different boron-based catalysts, such as hexagonal boron nitride, silicon boride, boron carbide, and elemental boron, were clarified. Combining the evidence of spectrum (IR, XPS, NMR, SVUV-PIMS, etc.) and kinetics (partial pressure, kinetic isotope effect, isotope labeling, etc.) and theoretical calculation, the active sites of boron-based catalysts, namely the surface of the tricoordinated boroxol species (B-OH/B-O) and the reaction mechanism containing surface and gas-phase radical reaction were highlighted. The opportunities and the challenges of using boron-based materials in oxidative dehydrogenation of light alkanes were summarized. It indicates that the design of the boron-based materials with highly promoted olefin selectivity is the main topic in further researches. Several suggestions were proposed for the rational design and practical application of boron-based catalytic materials. © 2021, Chemical Industry Press Co., Ltd. All right reserved.

备注:新增回溯数据