个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:校长助理
其他任职:精细化工国家重点实验室副主任,辽宁省低碳资源高值化利用重点实验室主任
性别:男
毕业院校:中科院山西煤化所
学位:博士
所在单位:化工学院
学科:工业催化. 化学工艺. 能源化工
办公地点:大连市凌工路2号大连理工大学西部校区化工楼,邮编:116024
联系方式:0411-84986112
电子邮箱:anhuilu@dlut.edu.cn
Fabrication of strong internal electric field ZnS/Fe9S10 heterostructures for highly efficient sodium ion storage
点击次数:
论文类型:期刊论文
发表时间:2022-06-09
发表刊物:Journal of Materials Chemistry A
卷号:7
期号:19
页面范围:11771-11781
ISSN号:2050-7488
摘要:The interfacial properties of electrode materials have a crucial impact on enhancing their charge transfer. However, a deep understanding of this aspect remains elusive. Herein, we provide an effective strategy to manipulate the internal electric field (E-field) of metal sulfide heterostructures to accelerate their Na-ion storage kinetics. To prove this concept, we selected ZnS and Fe9S10 with a large energy bandgap difference as model components with the aim to build a strong E-field at their hetero-interfaces, thus fabricating stable ZnS/Fe9S10 heterostructures for high-rate and high-capacity sodium ion storage. The emerging built-in E-field in the carbon-coated ZnS/Fe9S10 heterostructures can accelerate ion/electron migration rates and facilitate charge transfer behavior by the internal driving force of the E-field, guaranteeing enhanced reaction reversibility and sodium storage kinetics. These engineered heterostructures deliver a high initial coulombic efficiency of 85.3%, a high reversible capacity of 636mA h g(-1) at 500 mA g(-1) and stable cycling performance. In particular, they also exhibit superior rate capacities of 295 mA h g(-1) at 30 A g(-1) and 235 mA h g(-1) at 50 A g(-1), indicating that this battery can be fully charged within 17 s. More importantly, this design concept can be extended to construct other heterostructures, such as ZnS and Sn2S3.