陆安慧

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:校长助理

其他任职:精细化工国家重点实验室副主任,辽宁省低碳资源高值化利用重点实验室主任

性别:男

毕业院校:中科院山西煤化所

学位:博士

所在单位:化工学院

学科:工业催化. 化学工艺. 能源化工

办公地点:大连市凌工路2号大连理工大学西部校区化工楼,邮编:116024

联系方式:0411-84986112

电子邮箱:anhuilu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Toward Highly Stable Electrocatalysts via Nanoparticle Pore Confinement

点击次数:

论文类型:期刊论文

发表时间:2012-12-19

发表刊物:JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

收录刊物:SCIE、Scopus

卷号:134

期号:50

页面范围:20457-20465

ISSN号:0002-7863

摘要:The durability of electrode materials is a limiting parameter for many electrochemical energy conversion systems. In particular, electrocatalysts for the essential oxygen reduction reaction (ORR) present some of the most challenging instability issues shortening their practical lifetime. Here, we report a mesostructured graphitic carbon support, Hollow Graphitic Spheres (HGS) with a specific surface area exceeding 1000 m(2) g(-1) and precisely controlled pore structure, that was specifically developed to overcome the long-term catalyst degradation, while still sustaining high activity. The synthetic pathway leads to platinum nanoparticles of approximately 3 to 4 nm size encapsulated in the HGS pore structure that are stable at 850 degrees C and, more importantly, during simulated accelerated electrochemical aging. Moreover, the high stability of the cathode electrocatalyst is also retained in a fully assembled polymer electrolyte membrane fuel cell (PEMFC). Identical location scanning and scanning transmission electron microscopy (IL-SEM and IL-STEM) conclusively proved that during electrochemical cycling the encapsulation significantly suppresses detachment and agglomeration of Pt nanoparticles, two of the major degradation mechanisms in fuel cell catalysts of this particle size. Thus, beyond providing an improved electrocatalyst, this study describes the blueprint for targeted improvement of fuel cell catalysts by design of the carbon support.