个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:校长助理
其他任职:精细化工国家重点实验室副主任,辽宁省低碳资源高值化利用重点实验室主任
性别:男
毕业院校:中科院山西煤化所
学位:博士
所在单位:化工学院
学科:工业催化. 化学工艺. 能源化工
办公地点:大连市凌工路2号大连理工大学西部校区化工楼,邮编:116024
联系方式:0411-84986112
电子邮箱:anhuilu@dlut.edu.cn
Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume
点击次数:
论文类型:期刊论文
发表时间:2012-05-21
发表刊物:JOURNAL OF MATERIALS CHEMISTRY
收录刊物:SCIE、EI、Scopus
卷号:22
期号:19
页面范围:9645-9651
ISSN号:0959-9428
摘要:A tubular composite, including ultrafine SnO2 particles encapsulated in ordered tubular mesoporous carbon with thin walls and high pore volume, is fabricated through the in situ hydrolysis method. It is observed that up to 80 wt% of SnO2 particles with size between 4-5 nm are highly dispersed and homogeneously encapsulated in the mesopore channels and no bulky aggregates are visible. The tubular composite exhibits a considerably high reversible capacity of 978 mA h g(-1) and a high initial efficiency of 71% at a current density of 200 mA g(-1) between 0.005-3 V. Its reversible capacity even increases up to 1039 mA h g(-1) after 100 cycles, which is much higher than the conventional theoretical capacity of SnO2 (782 mA h g(-1)), meanwhile, it also displays fast discharge/charge kinetics at a high current density of 1500 mA g(-1). The excellent electrochemical performance is ascribed to its unique mesostructure by recruiting tubular mesoporous carbon with thin carbon walls (similar to 2 nm) and high pore volume (2.16 cm(3) g(-1)). This tubular nanostructure provides confined nanospace for hosting immobilized ultrafine SnO2 with high loading, compensates volume expansion of SnO2, warrants efficient contact between nanoparticles and carbon matrix before and after Li+ insertion. We believe this special structure model might be extended for the fabrication of other cathode and anode electrode materials, to achieve high performance LIBs.