个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:校长助理
其他任职:精细化工国家重点实验室副主任,辽宁省低碳资源高值化利用重点实验室主任
性别:男
毕业院校:中科院山西煤化所
学位:博士
所在单位:化工学院
学科:工业催化. 化学工艺. 能源化工
办公地点:大连市凌工路2号大连理工大学西部校区化工楼,邮编:116024
联系方式:0411-84986112
电子邮箱:anhuilu@dlut.edu.cn
Structurally Designed Synthesis of Mechanically Stable Poly(benzoxazine-co-resol)-Based Porous Carbon Monoliths and Their Application as High-Performance CO2 Capture Sorbents
点击次数:
论文类型:期刊论文
发表时间:2011-07-27
发表刊物:JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
收录刊物:PubMed、ESI高被引论文、Scopus、SCIE、EI
卷号:133
期号:29
页面范围:11378-11388
ISSN号:0002-7863
摘要:Porous carbon monoliths with defined multi-length scale pore structures, a nitrogen-containing framework, and high mechanical strength were synthesized through a self-assembly of poly(benzoxazine-co-resol) and a carbonization process. Importantly, this synthesis can be easily scaled up to prepare carbon monoliths with identical pore structures. By controlling the reaction conditions, porous carbon monoliths exhibit fully interconnected macroporosity and mesoporosity with cubic Im3m symmetry and can withstand a press pressure of up to 15.6 MPa. The use of amines in the synthesis results in a nitrogen-containing framework of the carbon monolith, as evidenced by the cross-polarization magic-angle-spinning NMR characterization. With such designed structures, the carbon monoliths show outstanding CO2 capture and separation capacities, high selectivity, and facile regeneration at room temperature. At similar to 1 bar, the equilibrium capacities of the monoliths are in the range of 3.3-4.9 mmol g(-1) at 0 degrees C and of 2.6-3.3 mmol g(-1) at 25 degrees C, while the dynamic capacities are in the range of 2.7-4.1 wt % at 25 degrees C using 14% (v/v) CO2 in N-2. The carbon monoliths exhibit high selectivity for the capture of CO2 over N-2 from a CO2/N-2 mixture, with a separation factor ranging from 13 to 28. Meanwhile, they undergo a facile CO2 release in an argon stream at 25 degrees C, indicating a good regeneration capacity.