陈炳才

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:哈尔滨工业大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术. 通信与信息系统

办公地点:创新园大厦

联系方式:手机:15504280859; 微信:33682049;

电子邮箱:china@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

SAMM: Surroundedness and absorption Markov Model Based Visual Saliency Detection in Images

点击次数:

论文类型:期刊论文

发表时间:2018-01-01

发表刊物:IEEE ACCESS

收录刊物:SCIE

卷号:6

页面范围:71422-71434

ISSN号:2169-3536

关键字:Saliency detection; image segmentation; artificial intelligence; absorption Markov model; eye fixation prediction; guided filter

摘要:In this paper, we propose a saliency detection method (SAMM) by using the surroundedness and absorption Markov model. First, the approximate area of the salient object is predicted by the surroundedness to the eye fixation point prediction. Second, a simple linear iterative clustering algorithm is applied to the original image to calculate superpixels, and a two-ring image graph model is formed. We calculate two initial saliency maps S-1 and S-2. Prior map S-1 is calculated by applying the absorption Markov chain, as the superpixel-based region of the two boundaries farthest from the predicted salient object is taken as the background region, while map S-2 is calculated by using the absorption Markov chain to detect the superpixels in the approximate region of the salient object as a foreground region. The final saliency map is obtained by combining S-1 and S-2. Finally, a guided filter is used to reduce the background noise from the saliency map. For the evaluation, experiments are performed on six publicly available test datasets (MSRA, ECSSD, Imgsal, DUT-OMRON, PASCAL-S, and MSRA10k), and the results are compared against 10 state-of-theart saliency detection algorithms. Our proposed saliency detection algorithm (SAMM) performs better with higher precision recall, AUC, F-measure, and minimum mean absolute error values.