陈炳才

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:哈尔滨工业大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术. 通信与信息系统

办公地点:创新园大厦

联系方式:手机:15504280859; 微信:33682049;

电子邮箱:china@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于改进卷积神经网络及LightGBM的滚动轴承故障诊断

点击次数:

论文类型:期刊论文

发表时间:2022-06-28

发表刊物:轴承

期号:06

页面范围:44-49

摘要:针对大多基于深度学习的故障诊断模型存在泛化能力不强、训练时间长等问题,提出了一种基于改进卷积神经网络(GCNN)和LightGBM的轴承故障诊断方法,首先,利用卷积层对随机失活后的原始信号进行特征提取;然后,使用全局平均池化层取代全连接层以提高模型的泛化能力;最后,将提取到的特征输入到LightGBM中进行分类。试验结果表明,GCNN-LightGBM模型的训练、诊断平均时长分别只有44.64,0.08 s,在同负载、变负载测试集上的平均分类准确率分别高达99.72%和95.04%,诊断效率及分类准确率均优于其他对比模型,且具有较强的泛化能力。

备注:新增回溯数据