陈广义

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:机械工程学院

学科:车辆工程. 材料学

办公地点:汽车学院实验室A303

联系方式:18941135528

电子邮箱:chengy@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Cobalt nanoparticles encapsulated in N-doped graphene nanoshells as an efficient cathode electrocatalyst for a mechanical rechargeable zinc-air battery

点击次数:

论文类型:期刊论文

发表时间:2016-01-01

发表刊物:RSC ADVANCES

收录刊物:SCIE、EI

卷号:6

期号:93

页面范围:90069-90075

ISSN号:2046-2069

摘要:Air-cathodes with properties of efficiency, durability and low cost are essential for high performance metal-air batteries and fuel cells for practical applications. In this study, non-precious metal ORR electrocatalysts derived by the encapsulation of Co nanoparticles in N-doped graphene nanoshells were synthesized by a typical one-step pyrolysis process. Compared with commercial Pt/C catalysts, the prepared Co-30@N-G hybrid electrocatalyst showed a high ORR activity at the same level in an alkaline medium. Subsequently, the Co-30@N-G hybrid electrocatalyst has been used as a cathode of Zn-air batteries, which displays equivalent performance to the systems derived using a commercial Pt/C catalyst. The Co-30@N-G derived mechanical rechargeable Zn-air battery showed a persistent flat discharge curve with minimum voltage loss at a high discharge rate of 40 mA cm(-2). The robustness of the Co-30@N-G ORR catalyst can allow the batteries to work constantly by periodically replacing the Zn anode and electrolyte, presenting an efficient and economical cathode for Zn-air flow batteries or Zn-air fuel cells.