陈广义

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:机械工程学院

学科:车辆工程. 材料学

办公地点:汽车学院实验室A303

联系方式:18941135528

电子邮箱:chengy@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A comparative study of TiO2 and surface-treated TiO2 nanoparticles on thermal and mechanical properties of poly(epsilon-caprolactone) nanocomposites

点击次数:

论文类型:期刊论文

发表时间:2012-09-05

发表刊物:JOURNAL OF APPLIED POLYMER SCIENCE

收录刊物:SCIE、EI、Scopus

卷号:125

期号:5

页面范围:3871-3879

ISSN号:0021-8995

关键字:poly(e-caprolactone); surface-treated TiO2; nanocomposites; thermal properties; mechanical properties

摘要:Polymer/inorganic nanocomposites were significant hybrid materials because of their unique properties. The surface of bare nanoparticles (b-TiO2) was modified by aminopropyl trimethoxy silane to obtain grafted TiO2 (g-TiO2) nanoparticles for the improvement of nanoparticles dispersion. The b-TiO2 and resulting g-TiO2 nanoparticles were introduced into poly(e-caprolactone) (PCL) matrix to prepare PCL/TiO2 nanocomposites by in situ polymerization. The effects of b-TiO2 and g-TiO2 nanoparticles on the structure, morphology, and properties of nanocomposites were characterized and compared. The results showed that the crystalline structure of PCL matrix was not affected significantly by adding b-TiO2 or g-TiO2 nanoparticles. The g-TiO2 nanoparticles had a finer dispersion and better compatibility than bare TiO2. The introduction of g-TiO2 into PCL matrix increased the crystallization temperature and improved thermal stability of the nanocomposites with respect to untreated TiO2. The surface-treated nanoparticles played an important role in strengthening mechanical properties of the nanocomposites because of its well dispersion and strong interfacial interaction between the nanoparticles and PCL matrix. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012