陈喆

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理. 通信与信息系统

办公地点:大连理工大学创新园大厦A526室

联系方式:0411-84706005-3526

电子邮箱:zhechen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Global Coherence Field and Distributed Particle Filter-Based Speaker Tracking in Distributed Microphone Networks

点击次数:

论文类型:期刊论文

发表时间:2015-09-01

发表刊物:JOURNAL OF COMPUTATIONAL ACOUSTICS

收录刊物:SCIE

卷号:23

期号:3

ISSN号:0218-396X

关键字:Distributed microphone networks; speaker tracking; distributed particle filter; global coherence field; average consensus algorithm

摘要:Based on the combination of global coherence field (GCF) and distributed particle filter (DPF) a speaker tracking method is proposed for distributed microphone networks in this paper. In the distributed microphone network, each node comprises a microphone pair, and its generalized cross-correlation (GCC) function is estimated. Based on the average over all local GCC observations, a global coherence field-based pseudo-likelihood (GCF-PL) function is developed as the likelihood for a DPF. In the proposed method, all nodes share an identical particle set, and each node performs local particle filtering simultaneously. In the local particle filter, the likelihood GCF-PL for each particle weight is computed with an average consensus algorithm. With an identical particle set and the consistent estimate of GCF-PL for each particle weight, all individual nodes possess a common particle presentation for the global posterior of the speaker state, which is utilized by each node for an estimated global speaker position. Employing the GCF-PL as the likelihood for DPF, no assumption is required about the independence of nodes observations as well as observation noise statistics. Additionally, only local information exchange occurs among neighboring nodes; and finally each node has a global estimate of the speaker position. Simulation results demonstrate the validity of the proposed method.