个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:人力资源处处长(党委教师工作部部长、党委人才办公室主任)【兼党委组织部副部长】
性别:男
毕业院校:上海交通大学
学位:博士
所在单位:生物医学工程学院
学科:生物医学工程. 信号与信息处理. 模式识别与智能系统
电子邮箱:cong@dlut.edu.cn
POST-ICA PHASE DE-NOISING FOR RESTING-STATE COMPLEX-VALUED FMRI DATA
点击次数:
论文类型:会议论文
发表时间:2017-03-05
收录刊物:Scopus、EI、CPCI-S
页面范围:856-860
关键字:Independent component analysis (ICA); complex-valued fMRI data; resting-state fMRI data; phase de-noising; phase range detection
摘要:Magnitude-only resting-state fMRI data have been largely investigated via independent component analysis (ICA) for exacting spatial maps (SMs) and time courses. However, the native complex-valued fMRI data have rarely been studied. Motivated by the significant improvements achieved by ICA of complex-valued task fMRI data than magnitude-only task fMRI data, we present an efficient method for de-noising SM estimates which makes full use of complex-valued resting-state fMRI data. Our two main contributions include: (1) The first application of a post-ICA phase de-noising method, originally proposed for task fMRI data, to resting-state data, which recognizes voxels within a specific phase range as desired voxels. (2) A new phase range detection strategy for a specific SM component based on correlation with its reference. We continuously change the phase range within a larger range, and compute a set of correlation coefficients between each de-noised SM and its reference. The phase range with the maximal correlation determines the final selection. The detected results by the proposed approach confirm the correctness of the post-ICA phase de-noising method in the analysis of resting-state complex-valued fMRI data.