丛丰裕

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:人力资源处处长(党委教师工作部部长、党委人才办公室主任)【兼党委组织部副部长】

性别:男

毕业院校:上海交通大学

学位:博士

所在单位:生物医学工程学院

学科:生物医学工程. 信号与信息处理. 模式识别与智能系统

电子邮箱:cong@dlut.edu.cn

扫描关注

论文成果

当前位置: 丛丰裕主页 >> 科学研究 >> 论文成果

Snowball ICA: A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data

点击次数:

论文类型:期刊论文

发表时间:2021-01-10

发表刊物:FRONTIERS IN NEUROSCIENCE

卷号:14

关键字:independent component analysis; functional magnetic resonance imaging; model order; dimension reduction; mutual information

摘要:In independent component analysis (ICA), the selection of model order (i.e., number of components to be extracted) has crucial effects on functional magnetic resonance imaging (fMRI) brain network analysis. Model order selection (MOS) algorithms have been used to determine the number of estimated components. However, simulations show that even when the model order equals the number of simulated signal sources, traditional ICA algorithms may misestimate the spatial maps of the signal sources. In principle, increasing model order will consider more potential information in the estimation, and should therefore produce more accurate results. However, this strategy may not work for fMRI because large-scale networks are widely spatially distributed and thus have increased mutual information with noise. As such, conventional ICA algorithms with high model orders may not extract these components at all. This conflict makes the selection of model order a problem. We present a new strategy for model order free ICA, called Snowball ICA, that obviates these issues. The algorithm collects all information for each network from fMRI data without the limitations of network scale. Using simulations andin vivoresting-state fMRI data, our results show that component estimation using Snowball ICA is more accurate than traditional ICA. The Snowball ICA software is available at.