Chao Zhang   

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

MORE> Recommended Ph.D.Supervisor Recommended MA Supervisor Institutional Repository Personal Page
Language:English

Paper Publications

Title of Paper:Binary Output Layer of Extreme Learning Machine for Solving Multi-class Classification Problems

Hits:

Date of Publication:2020-08-01

Journal:NEURAL PROCESSING LETTERS

Included Journals:SCIE

Volume:52

Issue:1,SI

Page Number:153-167

ISSN No.:1370-4621

Key Words:Extreme learning machines (ELM); Multi-class classification problems; One-to-one approach; Binary approach; Accuracies

Abstract:Considered in this paper is the design of output layer nodes of extreme learning machine (ELM) for solving multi-class classification problems with r (r >= 3) classes of samples. The common and conventional setting of output layer, called "one-to-one approach" in this paper, is as follows: The output layer contains r output nodes corresponding to the r classes. And for an input sample of the ith class (1 <= i <= r), the ideal output is 1 for the ith output node, and 0 for all the other output nodes. We propose in this paper a new "binar y approach": Suppose 2(q-1) < r <= 2(q) with q >= 2, then we let the output layer contain q output nodes, and let the ideal outputs for the r classes be designed in a binary manner. Numerical experiments carried out in this paper show that our binary approach does equally good job as, but uses less output nodes and hidden-output weights than, the traditional one-to-one approach.

Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024
Click:    MOBILE Version DALIAN UNIVERSITY OF TECHNOLOGY Login

Open time:..

The Last Update Time: ..