个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:西北师范大学
学位:博士
所在单位:数学科学学院
学科:应用数学. 基础数学
办公地点:B1409
联系方式:大连理工大学创新园大厦
电子邮箱:daiguowei@dlut.edu.cn
EIGENVALUES, GLOBAL BIFURCATION AND POSITIVE SOLUTIONS FOR A CLASS OF NONLOCAL ELLIPTIC EQUATIONS
点击次数:
论文类型:期刊论文
发表时间:2016-09-01
发表刊物:TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS
收录刊物:SCIE、Scopus
卷号:48
期号:1
页面范围:213-233
ISSN号:1230-3429
关键字:Bifurcation; eigenvalue; Kirchhoff type equation; positive solutions
摘要:In this paper, we shall study global bifurcation phenomenon for the following Kirchhoff type problem:
{-(a + b integral(Omega) vertical bar del(u)vertical bar(2) dx) Delta u = lambda u + h(x, u, lambda) in Omega,
u = 0 on Omega.
Under some natural hypotheses on h, we show that (a lambda(1), 0) is a bifurcation point of the above problem. As an application of the above result, we shall determine the interval of lambda, in which there exist positive solutions for the above problem with h(x, u; lambda) = lambda f (x, u) - lambda u, where f is asymptotically linear at zero and asymptotically 3-linear at infinity. To study global structure of bifurcation branch, we also establish some properties of the first eigenvalue for a nonlocal eigenvalue problem. Moreover, we provide a positive answer to an open problem involving the case a = 0.