个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:西北师范大学
学位:博士
所在单位:数学科学学院
学科:应用数学. 基础数学
办公地点:B1409
联系方式:大连理工大学创新园大厦
电子邮箱:daiguowei@dlut.edu.cn
EIGENVALUE, BIFURCATION, CONVEX SOLUTIONS FOR MONGE-AMPERE EQUATIONS
点击次数:
论文类型:期刊论文
发表时间:2015-09-01
发表刊物:TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS
收录刊物:SCIE、Scopus
卷号:46
期号:1
页面范围:135-163
ISSN号:1230-3429
关键字:Eigenvalue; bifurcation; convex solution; Monge-Ampere equation
摘要:In this paper we study the following eigenvalue boundary value problem for Monge-Ampere equations
{det(D(2)u) = lambda(N) f(-u) in Omega,
u = 0 on partial derivative Omega.
We establish global bifurcation results for the problem with f(u) = u(N) + g(u) and Omega being the unit ball of R-N. More precisely, under some natural hypotheses on the perturbation function g: [0, +infinity) -> [0, +infinity), we show that (lambda(1), 0) is a bifurcation point of the problem and there exists an unbounded continuum of convex solutions, where lambda(1) is the first eigenvalue of the problem with f(u) = u(N). As the applications of the above results, we consider with determining interval of lambda, in which there exist convex solutions for this problem in unit ball. Moreover, we also get some results about the existence and nonexistence of convex solutions for this problem on general domain by domain comparison method.