个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:系统工程研究所
学科:管理科学与工程. 系统工程
电子邮箱:yzhdang@dlut.edu.cn
A Product Recommendation Approach Based on the Latent Social Trust Network Model for Collaborative Filtering
点击次数:
论文类型:会议论文
发表时间:2016-08-01
收录刊物:EI、CPCI-S、Scopus
页面范围:178-185
关键字:Product recommendation; latent social trust network; coupling trust; co-citation trust; interest similarity; collaborative filtering
摘要:Recommender systems take advantage of dynamic and collective knowledge to make personalized recommendations to each user. Collaborative filtering as a well-known technique in recommender systems often encounters some challenges such as spare rating data and malicious attacks. Trust-based collaborative filtering employs the social trust network to make recommendations in order to alleviate the above problems. Unfortunately, explicit trust information is quite deficient, which leads to the limited recommendation capability. Therefore, a latent social trust network model is proposed to improve the recommendation performance. The latent social trust comes from the coupling trust and the co-citation trust as well as the similar interests between users. Based on the latent trust information, a new social trust network can be built and then be used to predict the target user's taste. The experimental results demonstrate that our approach can rationally infer the trust relationships between users and highly improve the recommendation performance.