的个人主页 http://faculty.dlut.edu.cn/dechuans/zh_CN/index.htm
点击次数:
论文类型:期刊论文
发表时间:2019-12-20
发表刊物:INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING
收录刊物:SCIE
卷号:2019
ISSN号:1687-5966
摘要:A rocket engine for space propulsion usually has a nozzle of a large exit area ratio. The nozzle efficiency is greatly affected by the nozzle contour. This paper analysed the effect of the constant capacity ratio in Rao's method through the design process of an apogee engine. The calculation results show that increasing the heat capacity ratio can produce an expansion contour of smaller expansion angle and exit area ratio. A simple modification of Rao's method based on thermally perfect gas assumption was made and verified to be more effective. The expansion contour designed by this method has much thinner expansion section and higher performance. For the space engine, a new extension contour type for the end section of the nozzle is proposed. The extension curve bent outward with increasing expansion angle increases the vacuum specific impulse obviously.