• 更多栏目

    杨希川

    • 研究员     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:化工学院
    • 电子邮箱:yangxc@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    High-efficiency perovskite solar cells employing a conjugated donor-acceptor co-polymer as a hole-transporting material

    点击次数:

    论文类型:期刊论文

    发表时间:2017-01-01

    发表刊物:RSC ADVANCES

    收录刊物:SCIE、EI

    卷号:7

    期号:44

    页面范围:27189-27197

    ISSN号:2046-2069

    摘要:In this work, we have successfully introduced 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) as an efficient p-type dopant for donor-acceptor (D-A) co-polymer poly[2,6-(4,4-bis-(2ethylhexyl)- 4H-cyclopenta[2,1-b; 3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) as an HTM in mesoscopic perovskite solar cells (PSCs). The bulk conductivity is significantly enhanced by 4 orders of magnitude when PCPDTBT is doped with F4TCNQ (6%, w/w). UV-vis and Fourier transform infrared spectroscopy (FTIR) results indicate the occurrence of p-doping, which results in higher bulk conductivity. The high conductivity leads to an impressive overall efficiency of 15.1%, which is considerably higher than the pristine PCPDTBT based devices (9.2%). The superior performance obtained should be largely attributed to the significant enhancement of the photocurrent density strongly correlated with a more efficient charge collection. This is the highest efficiency reported so far for PCPDTBT-based PSCs. Thus, molecularly p-doping has been demonstrated to be an effective strategy for further improving the performance of a wide range of D-A and other types of polymeric HTMs in PSCs.