• 更多栏目

    杨希川

    • 研究员     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:化工学院
    • 电子邮箱:yangxc@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Molecular Engineering of Copper Phthalocyanines: A Strategy in Developing Dopant-Free Hole-Transporting Materials for Efficient and Ambient-Stable Perovskite Solar Cells

    点击次数:

    论文类型:期刊论文

    发表时间:2019-01-01

    发表刊物:ADVANCED ENERGY MATERIALS

    收录刊物:SCIE、Scopus

    卷号:9

    期号:4

    ISSN号:1614-6832

    关键字:copper (II) phthalocyanine; dopant-free; hole-transporting materials; perovskite solar cells; stability

    摘要:Copper (II) phthalocyanines (CuPcs) have attracted growing interest as promising hole-transporting materials (HTMs) in perovskite solar cells (PSCs) due to their low-cost and excellent stability. However, the most efficient PSCs using CuPc-based HTMs reported thus far still rely on hygroscopic p-type dopants, which notoriously deteriorate device stability. Herein, two new CuPc derivatives are designed, namely CuPc-Bu and CuPc-OBu, by molecular engineering of the non-peripheral substituents of the Pc rings, and applied as dopant-free HTMs in PSCs. Remarkably, a small structural change from butyl groups to butoxy groups in the substituents of the Pc rings significantly influences the molecular ordering and effectively improves the hole mobility and solar cell performance. As a consequence, PSCs based on dopant-free CuPc-OBu as HTMs deliver an impressive power conversion efficiency (PCE) of up to 17.6% under one sun illumination, which is considerably higher than that of devices with CuPc-Bu (14.3%). Moreover, PSCs containing dopant-free CuPc-OBu HTMs show a markedly improved ambient stability when stored without encapsulation under ambient conditions with a relative humidity of 85% compared to devices containing doped Spiro-OMeTAD. This work thus provides a fundamental strategy for the future design of cost-effective and stable HTMs for PSCs and other optoelectronic devices.