• 更多栏目

    杨希川

    • 研究员     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:化工学院
    • 电子邮箱:yangxc@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Fine-Tuning by Triple Bond of Carbazole Derivative Dyes to Obtain High Efficiency for Dye-Sensitized Solar Cells with Copper Electrolyte

    点击次数:

    论文类型:期刊论文

    发表时间:2020-10-14

    发表刊物:ACS APPLIED MATERIALS & INTERFACES

    卷号:12

    期号:41

    页面范围:46397-46405

    ISSN号:1944-8244

    关键字:dye-sensitized solar cell; carbazole derivative; organic sensitizers; copper electrolyte; organic sensitizers

    摘要:Three novel dyes consisting of a 5,8,15-tris(2-ethylhexyl)-8,15-dihydro-SH-benzo[1,2-b:3,4-b':6,5-b '']tricarbazole (BTC) electron-donating group and a 4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (BTBT) pi-bridge with an anchoring group of phenyl carboxyl acid were synthesized and applied in dye-sensitized solar cells (DSCs).The AJ202 did not contain any triple bonds, the AJ201's ethynyl group was inserted between the BTC and BTBT units, and the AJ206's ethynyl group was introduced between the BTBT moiety and the anchor group. The inclusion and position of the ethynyl linkage in the sensitizer molecules significantly altered the electrochemical properties of these dyes, which can fine-tune the energy levels of the dyes. The best performing devices contained AJ206 as a sensitizer and a Cu(I/II) redox couple, which resulted in a power conversion efficiency (PCE) up to 10.8% under the standard AM 1.5 G illumination, which obtained PCEs higher than those from the devices that contained AJ201 (9.2%) and AJ202 (9.7%) under the same conditions. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the sensitizers were tuned to be well-suited for the Cu(I/II) redox potential and the Fermi level of TiO2. The innovative synthesis of a tricarbazole-based donor moiety in a sensitizer used in combination with a Cu(I/II) redox couple has resulted in relatively high PCEs.