• 更多栏目

    杨希川

    • 研究员     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:化工学院
    • 电子邮箱:yangxc@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Photoinduced intramolecular charge transfer and S-2 fluorescence in thiophene-pi-conjugated donor-acceptor systems: Experimental and TDDFT studies

    点击次数:

    论文类型:期刊论文

    发表时间:2008-08-08

    发表刊物:CHEMISTRY-A EUROPEAN JOURNAL

    收录刊物:EI、SCIE、Scopus

    卷号:14

    期号:23

    页面范围:6935-6947

    ISSN号:0947-6539

    关键字:charge transfer; density functional calculations; donor-acceptor systems; fluorescence; nonlinear optics

    摘要:Experimental and theoretical methods were used to study newly synthesized thiophene-pi-cojugated donor-acceptor compounds, which were found to exhibit efficient intramolecular charge-transfer emission in polar solvents with relatively large Stokes shifts and strong solvatochromism. To gain insight into the solvatochromic behavior of these compounds, the dependence of the spectra on solvent polarity was studied on the basis of Lippert-Mataga models. We found that intramolecular charge transfer in these donor-acceptor systems is significantly dependent on the electron-with-drawing substituents at the thienyl 2-position. The dependence of the absorption and emission spectra of these compounds in methanol on the concentration of trifluoroacetic acid was used to confirm intramolecular charge-tranfer emission. Moreover, the calculated absorption and emission energies, which are in accordance with the experimental values, suggested that fluorescence can be emitted from different geometric confirmations. In addition, a novel S-2 fluorescence phenomenon for some of these compounds was also be observed. The fluorescence excitation spectra were used to confirm the S-2 fluorescence. We demonstrate that S-2 fluorescence can be explained by the calculated energy gap between the S-2 and S-1 states of these molecules. Furthermore, nonlinear optical behavior of the thiophene-pi-conjugated compound with diethylcyanomethylphosphonate substituents was predicted in theory.