黄德根Huang Degen

(教授)

 博士生导师  硕士生导师
学位:博士
性别:男
毕业院校:大连理工大学
所在单位:计算机科学与技术学院
电子邮箱:huangdg@dlut.edu.cn

论文成果

Chinese hedge scope detection based on structure and semantic information

发表时间:2019-03-11 点击次数:

论文名称:Chinese hedge scope detection based on structure and semantic information
论文类型:会议论文
收录刊物:EI
卷号:10035 LNAI
页面范围:204-215
摘要:Hedge detection aims to distinguish factual and uncertain information, which is important in information extraction. The task of hedge detection contains two subtasks: identifying hedge cues and detecting their linguistic scopes. Hedge scope detection is dependent on syntactic and semantic information. Previous researches usually use lexical and syntactic information and ignore deep semantic information. This paper proposes a novel syntactic and semantic information exploitation method for scope detection. Composite kernel model is employed to capture lexical and syntactic information. Long short-term memory (LSTM) model is adopted to explore semantic information. Furthermore, we exploit a hybrid system to integrate composite kernel and LSTM model into a unified framework. Experiments on the Chinese Biomedical Hedge Information (CBHI) corpus show that composite kernel model could effectively capture lexical and syntactic information, LSTM model could capture deep semantic information and their combination could further improve the performance of hedge scope detection. © Springer International Publishing AG 2016.
发表时间:2016-10-15