location: Current position: Home >> Scientific Research >> Paper Publications

Effects of cyclopentane on CO2 hydrate formation and dissociation as a co-guest molecule for desalination

Hits:

Indexed by:期刊论文

Date of Publication:2017-01-01

Journal:JOURNAL OF CHEMICAL THERMODYNAMICS

Included Journals:SCIE、EI

Volume:104

Page Number:9-15

ISSN No.:0021-9614

Key Words:CO2 hydrate; Cyclopentane; Desalination; Thermodynamic

Abstract:Cyclopentane (CP) is considered to be a potential co-guest molecule in carbon dioxide (CO2) hydrate-based desalination. The experimental thermodynamic data of CO2-CP hydrates were measured for a salt solution, where CP was chosen as a hydrate promoter. Seven experimental cases (62 cycles) were studied with different molar ratios of CP/water (0, 0.0025, 0.005, 0.0075, 0.01, 0.02, and 0.03). Hydrate phase equilibrium data were generated using an isochoric method, and the hydrate saturations were calculated based on gas uptake. The results indicated that the increase in CP concentration significantly decreased the CO2 hydrate equilibrium pressure to a certain limit; the hydrate saturation also decreased during this process. Also, it was determined that CP encouraged the formation of s-II double CO2-CP hydrates, which are different from s-I simple CO2 hydrate. The CO2-CP guest provides a strengthened stability and moderate hydrate phase equilibrium conditions for hydrate-based desalination. The recommended optimal molar ratio of CP is 0.01 when the increase in equilibrium was more than 10 K, and the decrease in hydrate saturation was less than 2%. (C) 2016 Elsevier Ltd.

Pre One:Gas-Water Two Phase Flow Simulation Based on Pore Network Model for Reservoir Rocks

Next One:Experimental study on the permeability of gas hydrates-bearing Glass Sands