• 更多栏目

    刘瑜

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:能源与动力学院
    • 学科:能源与环境工程. 动力机械及工程
    • 办公地点:能动大楼912
    • 联系方式:0411-84708015
    • 电子邮箱:liuyu@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation

    点击次数:

    论文类型:期刊论文

    发表时间:2018-10-01

    发表刊物:APPLIED ENERGY

    收录刊物:SCIE

    卷号:227

    期号:,SI

    页面范围:624-633

    ISSN号:0306-2619

    关键字:Natural gas hydrates; Depressurization; Production pressure; Ice generation; Heat transfer

    摘要:Natural gas hydrates have garnered worldwide attention as an important potential non-conventional fossil fuel resource. When extracting natural gas from gas hydrate deposits via depressurization, problematic ice generation and hydrate reformation can occur under conditions of fast depressurizing and low production pressures, due to insufficient heat transfer in the surrounding sediments. In this work we conduct in sim magnetic resonance imaging (MRI) visualization and analysis of hydrate decomposition behavior for different depressurization modes; we visually determine the volumetric and spatial characteristics of the hydrate decomposition during depressurization induced gas production operation. Our results indicate that fast depressurization rate can result in a fast hydrate decomposition rate, therefore, a rapid gas production rate. In addition, the radial extension behavior of the decomposition front confirms that ambient heat transfer is a critical factor driving hydrate decomposition into free gas and liquid water. Obvious hydrate reformation and ice generation phenomenon, seen in some of the sudden depressurization experiments, can be effectively avoided using piecewise and continuous depressurization methods. The findings of this study clearly demonstrate how production pressures affect the gas production behavior from hydrate deposits and provide further insight for establishing optimal production techniques for utilizing hydrate resources in the field.