• 更多栏目

    刘瑜

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:能源与动力学院
    • 学科:能源与环境工程. 动力机械及工程
    • 办公地点:能动大楼912
    • 联系方式:0411-84708015
    • 电子邮箱:liuyu@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments

    点击次数:

    论文类型:期刊论文

    发表时间:2019-05-02

    发表刊物:ENERGIES

    收录刊物:SCIE、EI

    卷号:12

    期号:10

    ISSN号:1996-1073

    关键字:non-embedded; pressure core; P-wave detection; hydrate saturation

    摘要:An apparatus for the analysis of pressure cores containing gas hydrates at in situ pressures was designed, and a series of experiments to determine the compressional wave response of hydrate-bearing sands were performed systematically in the laboratory. Considering the difficulties encountered in performing valid laboratory tests and in recovering intact hydrate bearing sediment samples, the laboratory approach enabled closer study than the marine environment due to sample recovery problems. The apparatus was designed to achieve in situ hydrate formation in bearing sediments and synchronous ultrasonic detection. The P-wave velocity measurements enabled quick and successive ultrasonic analysis of pressure cores. The factors influencing P-wave velocity (V-p), including hydrate saturation and formation methodology, were investigated. By controlling the initial water saturation and gas pressure, we conducted separate experiments for different hydrate saturation values ranging from 2% to 60%. The measured P-wave velocity varied from less than 1700 m/s to more than 3100 m/s in this saturation range. The hydrate saturation can be successfully predicted by a linear fitting of the attenuation (Q(-1)) to the hydrate saturation. This approach provided a new method for acoustic measurement of the hydrate saturation when the arrival time of the first wave cannot be directly distinguished. Our results demonstrated that the specially designed non-embedded ultrasonic detection apparatus could determine the hydrate saturation and occurrence patterns in pressure cores, which could assist further hydrate resource exploration and detailed core analyses.