• 更多栏目

    刘瑜

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:能源与动力学院
    • 学科:能源与环境工程. 动力机械及工程
    • 办公地点:能动大楼912
    • 联系方式:0411-84708015
    • 电子邮箱:liuyu@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Pressure pulse wave attenuation model coupling waveform distortion and viscous dissipation for blockage detection in pipeline

    点击次数:

    论文类型:期刊论文

    发表时间:2020-01-01

    发表刊物:ENERGY SCIENCE & ENGINEERING

    收录刊物:SCIE

    卷号:8

    期号:1

    页面范围:260-265

    ISSN号:2050-0505

    关键字:blockage percentage detection; nonlinear effect; oil and gas transportation; pressure pulse wave attenuation model; waveform distortion

    摘要:Safety issues are always a major concern in the oil and gas transportation facilities. Equipment damages are frequently encountered due to solid deposition such as gas hydrate deposition. A fast and efficient detection of the location, length, and rate of the accumulating blockage will significantly help relieve the potential risk. Most existing pressure wave-based models suffer the difficulty to properly predict the blockage percentage arising from the ignorance of the wave attenuation. In the present work, an attenuation model to describe the transportation of the pressure pulse wave in gas is developed; the effects of waveform distortion and absorption as a result of the nonlinear effect and viscous dissipation are collectively considered for the first time. A simplified procedure to couple the wave attenuation in the model is proposed. The results show that the model can remarkably improve the prediction accuracy of blockage percentage by reducing the errors from -9.0% to -4.2%. Moreover, the attenuation process of the pressure pulse wave is determined to consist of three stages. The effect of waveform distortion on amplitude mainly occurs in the second stage, when our proposed model shows an improved prediction. The performance of the proposed model will help the early warning of the blockage in the pipelines and effectively avoid the potential injury and financial loss.