• 更多栏目

    刘瑜

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:能源与动力学院
    • 学科:能源与环境工程. 动力机械及工程
    • 办公地点:能动大楼912
    • 联系方式:0411-84708015
    • 电子邮箱:liuyu@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    (p, rho, T) Behavior of CO2 + Tetradecane Systems: Experiments and Thermodynamic Modeling

    点击次数:

    论文类型:期刊论文

    发表时间:2015-05-01

    发表刊物:JOURNAL OF CHEMICAL AND ENGINEERING DATA

    收录刊物:EI、SCIE、Scopus

    卷号:60

    期号:5

    页面范围:1476-1486

    ISSN号:0021-9568

    摘要:The injection of CO2 into oil reservoirs (CO2 enhanced oil recovery, CO2-EOR) can result in higher production, and the use of CO2 as a mining resource can thus be an economic driver for oil production. The thermodynamic properties of CO2 mixtures are essential for the design and operation of CO2-EOR systems. This paper addresses the (p, rho, T) properties of a CO2 + tetradecane solution. Experimental densities were measured on a magnetic suspension balance, and experiments were performed at pressures from 10 MPa to 19 MPa, temperatures from 313.15 K to 353.15 K, and CO2 mole fractions of x(1) = 0, 0.2469, 0.5241, 0.7534, and 0.8773. Solution densities increased with pressure and decreased with temperature over the experimental range. Density versus the CO2 mole fraction increased at first and then decreased at higher temperatures and higher CO2 concentrations. The compositions intersect when plotted, and the pressure intersection increased with temperature. The excess molar volumes of the binary mixtures were negative over the entire range of composition, which increased with increasing pressure and became more negative with increasing temperature. The PC-SAFT and tPC-PSAFT equations of state were used to calculate the densities of the binary mixtures. New PC-SAFT parameters for tetradecane were obtained by fitting to experimental densities directly. In both PC-SAFT and tPC-PSAFT, the binary interaction parameter k(ij) was fitted as a function of the CO2 mole fraction. The tPC-PSAFT combined with the correlation of k(ij) gave the best predictions of the CO2 + tetradecane mixture densities.