dongqingli
Associate Professor

Gender:Male

Alma Mater:东北财经大学

[MORE]

MOBILE Version

Paper Publications

A support vector machine based semiparametric mixture cure model

Release time:2020-08-29 Hits:

Indexed by:Journal Papers

Date of Publication:2020-09-01

Journal:COMPUTATIONAL STATISTICS

Included Journals:SCIE

Volume:35

Issue:3

Page Number:931-945

ISSN No.:0943-4062

Key Words:Censored survival time; Cure model; Support vector machine; EM algorithm; Multiple imputation

Abstract:The mixture cure model is an extension of standard survival models to analyze survival data with a cured fraction. Many developments in recent years focus on the latency part of the model to allow more flexible modeling strategies for the distribution of uncured subjects, and fewer studies focus on the incidence part to model the probability of being uncured/cured. We propose a new mixture cure model that employs the support vector machine (SVM) to model the covariate effects in the incidence part of the cure model. The new model inherits the features of the SVM to provide a flexible model to assess the effects of covariates on the incidence. Unlike the existing nonparametric approaches for the incidence part, the SVM method also allows for potentially high-dimensional covariates in the incidence part. Semiparametric models are also allowed in the latency part of the proposed model. We develop an estimation method to estimate the cure model and conduct a simulation study to show that the proposed model outperforms existing cure models, particularly in incidence estimation. An illustrative example using data from leukemia patients is given.

Click:

The Last Update Time:..

  

Open time:..

DALIAN UNIVERSITY OF TECHNOLOGYLogin 中文