董星龙

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中国科学院金属研究所

学位:博士

所在单位:材料科学与工程学院

学科:材料物理与化学. 材料学

办公地点:新三束实验室201

联系方式:0411-84706130

电子邮箱:dongxl@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Tuning magnetic properties based on FeCoNiSi0.4Al0.4 with dual-phase nano-crystal and nano-amorphous microstructure

点击次数:

论文类型:期刊论文

发表时间:2020-02-01

发表刊物:INTERMETALLICS

收录刊物:EI、SCIE

卷号:117

ISSN号:0966-9795

关键字:High entropy alloy; FeCoNiSiAl; Nano-crystal and nano-amorphous; Milling; Phase transition; Magnetic properties

摘要:The idea of adjusting the crystallinity of powders via controlling the phase composition of milling precursor (ribbons) has been used to prepare FeCoNiSi0.4Al0.4 high entropy alloy powders (HEAPs) with dual-phase nano-crystal (NC) and nano-amorphous (NA) microstructure. The crystallinity of HEAPs are related to the FCC phase proportion of milling precursor: within 60%, positive correlation; beyond 60%, negative correlation. Different phase structure for ribbons can be obtained by taking advantage of the difference in phase stability, as an extension of annealing time induces the increment of FCC phase content. The introduction of nano-scale phase separation in HEA ribbons provides a prerequisite. Multiphase NCs distribute randomly in matrix, while NCs with FCC phase are aggregated into about 50 run regions embedded in matrix. Three kinds of phase transition are coexisted during the dry-milling process, generating the coexistence of NCs and NM. Due to the unique microstructure, in especial NCs doped by NM, and the skillful preparation technology, a small H-c, varying from 12.97 Oe (C-0) to 28.33 Oe (C-50), and a large complex permeability (mu'), varying from 2.60 (C-0) to 2.30 (C-50), can be obtained.