董星龙

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中国科学院金属研究所

学位:博士

所在单位:材料科学与工程学院

学科:材料物理与化学. 材料学

办公地点:新三束实验室201

联系方式:0411-84706130

电子邮箱:dongxl@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/epoxy resin composite plates

点击次数:

论文类型:期刊论文

发表时间:2015-11-01

发表刊物:COMPOSITE STRUCTURES

收录刊物:SCIE、EI、Scopus

卷号:131

页面范围:1132-1141

ISSN号:0263-8223

关键字:Carbon fiber; Mechanical properties; Nanocomposite; Nanoparticles; Epoxy resin; Reflection loss

摘要:A flat nanocomposite plate was fabricated by using the surface-modified Fe nanoparticles (NPs) as the microwave absorbent, carbon fibers (CFs) as the reinforced phase and epoxy resin (ER) as the matrix. Fe NPs were synthesised by an arc discharge plasma method and subsequently modified by silane coupling agent (KH-550) to improve its dispersion in the organic matrix of ER. To measure the realistic microwave absorption properties of such a flat nanocomposite plate, a series of square plates (20 x 20 cm(2)) was made from recombining the modified Fe NPs (20 wt.%, 30 wt.% and 40 wt.%) into the ER matrix with/without orientated CFs inside. It was observed that the orientation of CFs plays an important role in the microwave absorption, in particular through a strong reflection of microwave inwardly as the CFs' array is vertical to the direction of incident microwave. The inner strong reflection of microwave by CFs can bring great probabilities to further consume it by Fe NPs absorbent and result in improved microwave absorption performance of the nanocomposite plate. It is indicated that the plate containing 30 wt.% of Fe NPs with a perpendicular manner between the directions of CFs array and incident microwave exhibits higher reflection loss (RL) of -16.2 dB at 6.1 GHz frequency, and this plate has 77.78 MPa flexural strength at 3.74% deformation. Excellent RL property is ascribed to an optimum structure of nanocomposite plate with favorable multi-reflection of microwave inside, structural resonance, appropriate conductivity, impedance match, interface polarization. (C) 2015 Elsevier Ltd. All rights reserved.