个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:中国科学院大学
学位:博士
所在单位:生物医学工程学院
学科:生物医学工程. 流体力学. 测试计量技术及仪器
办公地点:厚坤楼A201
联系方式:xuechundong@dlut.edu.cn
电子邮箱:xuechundong@dlut.edu.cn
A microfluidic platform enabling real-time control of dynamic biochemical stimuli to biological cells
点击次数:
论文类型:期刊论文
发表时间:2020-09-01
发表刊物:JOURNAL OF MICROMECHANICS AND MICROENGINEERING
收录刊物:SCIE
卷号:30
期号:9
ISSN号:0960-1317
关键字:microfluidic platform; dynamic biochemical stimuli; real-time control; biological cell; cellular dynamic response
摘要:In the present study, we report a microfluidic platform that enables real-time control of biochemical stimuli to biological cells. The microfluidic platform is designed by integrating a 'Christmas tree' inlet for pre-generating spatially linear concentration gradient, with a Y-shaped channel to modulate dynamic signals with an external programmable air pump. The proposed design is simple and straightforward, has negligible response time compared to the traditional Y-shaped channel, and for the first time, provides the capability of generating versatile waveforms of dynamic stimuli and implementing multiple dynamic stimulating signals with different amplitudes synchronously. The feasibility of the microfluidic platform is proved by both computational fluid dynamics simulation and fluorescein experiment. The applicability of the proposed platform is demonstrated by characterizing the intracellular calcium ion dynamics in human umbilical vein endothelial cells in response to multiple dynamic stimuli within a single run. The proposed platform provides a simple approach to rapidly control dynamic stimuli with versatile waveforms to biological cells and shows the potential for the quantitative study of biological cellular dynamic responses.