都健

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:化学工程

办公地点:大连理工大学西部校区化工实验楼D段305室

联系方式:130-1948-9068(手机)

电子邮箱:dujian@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Simultaneous Optimization of a Heat-Integrated Coal-to-SNG/MeOH Polygeneration Process Based on Rigorous Kinetic Models

点击次数:

论文类型:期刊论文

发表时间:2021-03-18

发表刊物:INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

卷号:59

期号:51

页面范围:22247-22257

ISSN号:0888-5885

摘要:In this article, a novel simulation-optimization method is proposed for the simultaneous design of a heat-integrated coal-to-SNG/MeOH (CTSM) polygeneration process, aiming at exergy efficiency enhancement. The genetic algorithm is adopted to simultaneously optimize the presented polygeneration process, which combines the key reaction units based on rigorous kinetic modeling and simulation with a waste heat recovery steam cycle (WHRSC). A heat integration approach that considers variable stream conditions is introduced to connect CTSM and WHRSC. In developing this approach, an extended Duran-Grossmann (D-G) model is established, which incorporates the isothermal phase change and nonisothermal phase change. The interaction mechanism between process synthesis and heat integration is further explored. Compared with the base case obtained by a sequential method, the presented method yields a 2.22 percentage point increase in the overall exergy efficiency and a 44.05% improvement of power generation. In this sense, the utility consumption in the polygeneration process can be sharply reduced and even achieve zero hot utility consumption. The corresponding heat exchanger network is determined that consists of 56 heat exchangers and 7 coolers with a total area of 93 763 m(2). Furthermore, the interaction among different process units reveals that process synthesis has a stronger effect on heat integration.