
副教授 硕士生导师
性别: 男
毕业院校: 名古屋大学
学位: 博士
所在单位: 数学科学学院
学科: 计算数学
办公地点: 数学楼606
电子邮箱: dulei@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2018-01-01
发表刊物: APPLIED MATHEMATICS LETTERS
收录刊物: Scopus、SCIE、EI
卷号: 75
页面范围: 74-81
ISSN号: 0893-9659
关键字: Tridiagonal Toeplitz matrix; Direct methods; LU decomposition; Sherman-Morrison formula
摘要: In this paper, we consider the solution of tridiagonal quasi-Toeplitz linear systems. By exploiting the special quasi-Toeplitz structure, we give a new decomposition form of the coefficient matrix. Based on this matrix decomposition form and combined with the Sherman Morrison formula, we propose an efficient algorithm for solving the tridiagonal quasi-Toeplitz linear systems. Although our algorithm takes more floating-point operations (FLOPS) than the LU decomposition method, it needs less memory storage and data transmission and is about twice faster than the LU decomposition method. Numerical examples are given to illustrate the efficiency of our algorithm. (C) 2017 Elsevier Ltd. All rights reserved.