个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中国科学院兰州化学物理研究所
学位:博士
所在单位:环境学院
办公地点:环境楼 B415
联系方式:Tel: 0411-84706658
电子邮箱:xyli@dlut.edu.cn
Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: In situ FTIR analysis for structure-activity correlation
点击次数:
论文类型:期刊论文
发表时间:2017-01-01
发表刊物:APPLIED CATALYSIS B-ENVIRONMENTAL
收录刊物:SCIE、EI、ESI高被引论文
卷号:200
页面范围:297-308
ISSN号:0926-3373
关键字:Low-temperature NH3-SCR; Nitrogen oxides (NOx); Surface Ce3+ species; In situ FTIR; Reaction mechanism
摘要:A series of transition metals (Co, Cu and Fe) were selected to decorate Ce-Ti mixed oxide to elevate the low-temperature activity of selective catalytic reduction of NOx by NH3 (NH3-SCR) reaction, by adjusting the ratio of surface Ce3+ species and oxygen vacancies. Among them, Co-Ce-Ti sample exhibited the excellent low-temperature activity and broadened temperature window, which could be attributed to the improvement of the physico-chemical properties and the acceleration of the reactions in the Langmuir-Hinshelwood (L-H) and Eley-Rideal (E-R) mechanisms. Owing to the different ionic sizes of Co2+ and Ce4+, the lattice distortion of Ce-Ti mixed oxide was greatly aggravated and subsequently increased the ratio of Ce3+ and the surface adsorbed oxygen, which benefited the generation of adsorbed NOx species and improved the reaction in the L-H mechanism. Meanwhile, the coordinatively unsaturated cationic sites over the Co-Ce-Ti sample induced more Lewis acid sites and enhanced the formation of the adsorbed NH3 species bounded with Lewis acid sites, which were considered as the crucial intermediates in E-R mechanism, and therefore facilitating the reaction between the adsorbed NH3 species and NO molecules. The enhancements in both the reactions from L-H and E-R mechanisms appeared to directly correlated with the improved deNO(x) performance on the Co-Ce-Ti sample, and the L-H mechanism could be the dominate one at low temperatures due to its rapid reaction rate. (C) 2016 Published by Elsevier B.V.