李新勇

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中国科学院兰州化学物理研究所

学位:博士

所在单位:环境学院

办公地点:环境楼 B415

联系方式:Tel: 0411-84706658

电子邮箱:xyli@dlut.edu.cn

扫描关注

论文成果

当前位置: 李新勇 >> 科学研究 >> 论文成果

Unique hollow Ni-Fe@MoS2 nanocubes with boosted electrocatalytic activity for N-2 reduction to NH3

点击次数:

论文类型:期刊论文

发表时间:2020-04-21

发表刊物:JOURNAL OF MATERIALS CHEMISTRY A

收录刊物:SCIE

卷号:8

期号:15

页面范围:7339-7349

ISSN号:2050-7488

摘要:Nanostructure tailoring is considered as an efficient strategy to design high-performance electrocatalysts for improving electrocatalytic properties by exposing more active sites and promoting rapid electron transfer. Unfortunately, nanomaterials with a well-constructed morphology for the nitrogen reduction reaction (NRR) under ambient conditions are insufficient, and the yield rate and faradaic efficiency are still not high. Herein, NiFe-MoS2 nanocubes (NiFe@MoS2 NCs) are successfully synthesized derived from the corresponding Prussian blue analog self-templating strategy. Owing to its four-pointed star face-dependent hollow structure and trimetallic synergistic interactions, it largely exposes abundant active sites, making it present superb electrocatalytic performance for N-2 conversion to NH3. In a 0.1 M Na2SO4 electrolyte, these as-prepared Ni-Fe@MoS2 NCs exhibit a significant NH3 yield of 128.17 mu g h(-1) mg(cat.)(-1) and a satisfactory faradaic efficiency of 11.34% at -0.3 V vs. reversible hydrogen electrode (RHE) operation at 40 degrees C. The stability of the catalyst was determined by performing 15 hour continuous N-2 reduction with a constant current density. The possible NRR catalytic paths, mechanism and electron transfer paths are elucidated in detail by in situ electrochemical-Fourier transform infrared spectroscopy combined with density functional theory calculations. This work offers new inspirations to the development of various cost-effective electrocatalysts for N-2 fixation.