个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中国科学院兰州化学物理研究所
学位:博士
所在单位:环境学院
办公地点:环境楼 B415
联系方式:Tel: 0411-84706658
电子邮箱:xyli@dlut.edu.cn
Rational design and synthesis of highly oriented copper-zinc ferrite QDs/titania NAE nano-heterojunction composites with novel photoelectrochemical and photoelectrocatalytic behaviors
点击次数:
论文类型:期刊论文
发表时间:2021-01-30
发表刊物:DALTON TRANSACTIONS
卷号:47
期号:36
页面范围:12769-12782
ISSN号:1477-9226
摘要:This work reported that novel highly oriented and vertically aligned stoichiometric copper- and zinc-based ferrites, i.e., Cu0.5Zn0.5Fe2O4 quantum dots (QDs) anchored with TiO2 nanotube array electrode (NAE) composites, with n-n nano-heterojunctions and highly effective simulated solar light harvesting could be successfully achieved via electrochemical anodization followed by a vacuum-assisted impregnation strategy. It has been observed that Cu0.5Zn0.5Fe2O4 QDS/TiO2 NAE composites exhibit distinctly enhanced visible light photoelectrocatalytic (PEC) performance toward the degradation of typical pollutants including sulfamethoxazole (SMX) and methylene blue (MB) as compared to that of pristine TiO2 NAEs, which can be attributed to the synergistic effect of heterostructures with strong interfacial interaction and abundant 1D nanotube array structures to facilitate efficient spatial charge separation and interfacial transfers. The cocatalyst-anchoring of ternary oxides with derived spinet crystal structures onto nanotube arrays forming novel nanocomposites have obviously achieved remarkably enhanced photoelectrochemical (PE) conversion efficiencies, up to a dedicated value of 3.75%, under visible light irradiation as compared to that of 0.88% for aligned standalone TiO2 NAEs. Transient absorption spectroscopy quantitatively indicated long-lived photo-holes with lifetimes exceeding 72.23 mu s generated among Cu0.5Zn0.5Fe2O4 QDs/TiO2 NAE nanocomposites. Electron spinning resonance (ESR) demonstrated that more O-center dot(2)- species derived from molecular uptake played the predominant role in the PEC oxidations of SMX and MB species. Moreover, the binding energy of the onset edge (E-vf) and Fermi level (E-f) of Cu0.5Zn0.5Fe2O4 QDs/TiO2 NAEs indicated that Cu0.5Zn0.5Fe2O4 QDs modification could considerably enhance the visible light harvesting and adsorption properties of TiO2 NTs. Furthermore, Cu0.5Zn0.5Fe2O4 QDs/TiO2 NAEs achieved up to 50% PEC degradation efficiency and 52.4% COD removal with regard to practical textile wastewater when irradiated by simulated sunlight. This work has provided new insights into the molecular tailing and coupling of multiple spinets with TiO2 NTs possessing remarkable visible light harvesting and sensitization characteristics, which would offer a prospective strategy toward designing highly efficient and easily recyclable photocatalytic materials for environmental remediation and solar energy utilizations and conversions both simultaneously and standalone.
上一条:New Insight into the Effects of NH3 on SO2 Poisoning for In Situ Removal of Metal Sulfates in Low-Temperature NH3-SCR over an Fe-V Catalyst
下一条:Enhanced photoeletrocatalytic reduction dechlorinations of PCP by Ru-Pd BQDs anchored Titania NAEs composites with double Schottky junctions: First-principles evidence and experimental verifications